Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(1): 753-772, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38248351

RESUMO

Fishmeal and fish oil substitution in aquafeeds might have adverse effects on fish growth and health, mainly in carnivorous species, such as Mediterranean yellowtail (Seriola dumerili). Mediterranean yellowtail shows great potential as an alternative aquaculture species due to its fast growth and high price on the market, but the need for high-quality protein and fatty acid content in its diets is limiting its production. In order to improve the sustainability of its production, this study was conducted with 360 fish of 35 g to evaluate the effects on fish growth and health. Six diets were used: one control diet without replacement, three with FM replacement (FM66, FM33, and FM0) (33%, 66%, and 100% FM replacement), and two with FO replacement (FO50 and FO0) (50% and 100% FO replacement). The substitution of FM was with vegetable (VM) (corn gluten) and animal (AM) (krill and meat meal) meals. The reductions in FM and FO of up to 33 and 0%, respectively, did not affect the growth and survival of S. dumerili at the intestinal morphology level, except for the anterior intestine regarding the lower villi length and width and the posterior intestine regarding the lower width of the lamina propria. On the other hand, the substitution of fish ingredients in the diet affects liver morphology, indicating alterations in the major diameter of hepatocytes or their nuclei. Finally, diet did not affect the gut microbiota with respect to the control, but significant differences were found in alpha and beta diversity when FO and FM microbiota were compared. A 66% FM replacement and total FO replacement would be possible without causing major alterations in the fish.

2.
Fish Shellfish Immunol ; : 109921, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39321908

RESUMO

Sexual dimorphism in immunity has been extensively documented across vertebrates, with marked contrasts observed in immune responses between males and females. These variations are mainly attributed to oestrogens conferring enhanced immune responses in females, while males exhibit greater susceptibility to pathogens. However, in the light of the data, consensus is lacking, as different physiological and environmental factors such, as epigenetics, may impact sex-biased immunity. In fish, the regulation of immune responses through sex hormones is primarily determined by the leucocyte function, which contains sex steroid receptors. However, comparative sex-based research in fish immunity is still very limited. This study aimed to evaluate, for the first time, the disparities between males and females yellowtail kingfish (Seriola lalandi) juveniles in several parameters of local humoral innate immunity related to mucosae (skin mucus and foregut homogenates) and reproductive tissue (ovary and testis homogenates), as well as in serum. We investigated the sexual dimorphism in the expression patterns of genes coding for antimicrobial peptides, antiviral markers, and cytokines. Our findings revealed that the yellowtail kingfish males exhibit significantly higher levels of innate immune parameters, both functionally and transcriptionally, compared to females. These results suggest that females may have a higher susceptibility to pathogen infections, potentially leading to latent infections, which deservers further investigations. Understanding these sex-based differences in immunity could guide breeding strategies improvements and disease management in aquaculture facilities.

3.
Fish Shellfish Immunol ; 154: 109939, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39366647

RESUMO

Thioredoxin domain-containing protein 12 (TXNDC12) is a member of the thioredoxin-like superfamily that contributes to various thiol-dependent metabolic activities in all living organisms. In this research, the TXNDC12 gene from yellowtail clownfish (Amphiprion clarkii) was structurally characterized using in silico tools, assessed for immunological expression, and evaluated for biological activity using recombinant protein and cellular overexpression. The deduced coding sequence of AcTXNDC12 comprised a 522-bp nucleotide, encoding 173 amino acids with a predicted molecular mass of 19.198 kDa. The AcTXNDC12 protein consists of a66WCGAC70 active motif and a170GDEL173 signature. The highest tissue-specific expression of AcTXNDC12 was observed in the brain tissue, with significant modulation observed in the blood and gill tissues following stimulation of polyinosinic: polycytidylic acid, lipopolysaccharides (LPS), and Vibrio harveyi. In functional assays, recombinant AcTXNDC12 protein (rAcTXNDC12) showed insulin disulfide reduction activity, 2,2'-azino-di-(3-ethylbenzthiazoline sulfonic acid) decolorization antioxidant capacity, and ferric (Fe3+) reducing antioxidant potential. Additionally, a significant reduction in nitric oxide production was observed in AcTXNDC12-overexpressed RAW 264.7 cells upon LPS stimulation. Furthermore, genes associated with the regulation of oxidative stress, including nuclear factor erythroid 2-related factor 2 (Nrf2), catalase (Cat), peroxiredoxin 1 (Prx1), and ribonucleotide reductase catalytic subunit M1 (Rrm1) were significantly upregulated in fathead minnow cells overexpressing AcTXNDC12 in response to H2O2 treatment. The scratch wound healing assay demonstrated tissue regeneration and cell proliferation ability upon AcTXNDC12 overexpression. Altogether, the current study elucidated the antioxidant activity, immunological importance, and wound-healing effect of the AcTXNDC12 gene in yellowtail clownfish, providing valuable insights for advancing the aquaculture of A. clarkii fish.

4.
Cryobiology ; 116: 104929, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38871206

RESUMO

Primordial germ cells (PGCs) constitute an important cell lineage that directly impacts genetic dissemination and species conservation through the creation of cryobanks. In order to advance the field of animal genetic cryopreservation, this work aimed to recover intact PGCs cryopreserved in embryonic tissues during the segmentation phase for subsequent in vitro maintenance, using the yellow-tailed tetra (Astyanax altiparanae) as a model organism. For this, a total of 202 embryos were distributed in two experiments. In the first experiment, embryos in the segmentation phase were dissociated, and isolated PGCs were maintained in vitro. They were visualized using gfp-Pm-ddx4 3'UTR labeling. The second experiment aimed to vitrify PGCs using 3 cryoprotective agents or CPAs (dimethyl sulfoxide, ethylene glycol, and 1,2 propanediol) at 3 molarities (2, 3, and 4 M). The toxicity, somatic cell viability, and recovery of intact PGCs were evaluated. After cryopreservation and thawing, 2 M ethylene glycol produced intact PGCs and somatic cells (44 ± 11.52 % and 42.35 ± 0.33 %, respectively) post-thaw. The recovery of PGCs from frozen embryonic tissues was not possible without the use of CPAs. Thus, the vitrification of PGCs from an important developmental model and Neotropical species such as A. altiparanae was achieved, and the process of isolating and maintaining PGCs in a culture medium was successful. Therefore, to ensure the maintenance of genetic diversity, PGCs obtained during embryonic development in the segmentation phase between 25 and 28 somites were stored through vitrification for future applications in the reconstitution of species through germinal chimerism.


Assuntos
Criopreservação , Crioprotetores , Células Germinativas , Vitrificação , Animais , Criopreservação/métodos , Crioprotetores/farmacologia , Células Germinativas/citologia , Characidae/embriologia , Sobrevivência Celular , Etilenoglicol/farmacologia , Dimetil Sulfóxido/farmacologia , Embrião não Mamífero/citologia
5.
J Fish Dis ; 47(9): e13979, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38879867

RESUMO

The increasing significance of the aquaculture sector and commercially valuable species underscores the need to develop alternatives for controlling diseases such as Ichthyophthirius multifiliis-induced ichthyophthiriasis. This ciliated protozoan parasite threatens nearly all freshwater fish species, causing substantial losses in the fishery industry. Despite this, effective large-scale treatments are lacking, emphasizing the necessity of adopting preventive strategies. While the pathogenesis of ichthyophthiriasis and its immune stimulation allows for vaccination strategies, precise adjustments are crucial to ensure the production of an effective vaccine compound. Therefore, this study aimed to evaluate the impact of immunizing Astyanax lacustris with a genetic vaccine containing IAG52A from I. multifiliis and the molecular adjuvant IL-8 from A. lacustris. Transcript analysis in immunized A. lacustris indicated mRNA production in fish muscles, demonstrating an expression of this mRNA. Fish were divided into five groups, receiving different vaccine formulations, and all groups received a booster dose 14 days after the initial immunization. Samples from vaccinated fish showed increased IL-1ß mRNA expression in the spleen within 6 h post the second dose and after 14 days. In the head kidney, IL-1ß mRNA expression showed no significant difference at 6 and 24 h but an increase was noted in fish injected with IAG and IAG + IL-8 after 14 days. IL-8 mRNA expression in the spleen and kidney did not significantly differ from the control group. Histological analysis revealed no variation in leukocyte concentration at 6 and 24 h post-vaccination; however, after 14 days, the groups injected with IAG and IAG + IL-8 exhibited a higher leukocyte density at the application sites than the control. The obtained data suggest that the used vaccine is transcribed, indicating its potential to stimulate innate immune response parameters through mRNA cytokine expression and leukocyte migration.


Assuntos
Adjuvantes Imunológicos , Infecções por Cilióforos , Doenças dos Peixes , Hymenostomatida , Vacinas de DNA , Animais , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/imunologia , Doenças dos Peixes/parasitologia , Infecções por Cilióforos/veterinária , Infecções por Cilióforos/prevenção & controle , Infecções por Cilióforos/imunologia , Hymenostomatida/imunologia , Vacinas de DNA/imunologia , Vacinas de DNA/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Vacinação/veterinária , Vacinas Protozoárias/imunologia , Vacinas Protozoárias/administração & dosagem , Characidae/imunologia , Interleucinas/imunologia
6.
Fish Physiol Biochem ; 50(4): 1513-1526, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38722479

RESUMO

Leptins and other related genes have been proven to play vital roles in food intake, weight control, and other life activities. While the function of leptins in yellowtail kingfish (Seriola lalandi) has not yet been explored, in the present study, we investigated the structure and preliminary function of four leptin-related genes in S. lalandi. In detail, the sequence of two leptin genes (lepa and lepb), one leptin receptor gene (lepr), and one leptin receptor overlapping transcript (leprot) gene were obtained by homology cloning and RACE methods, in which lepa and lepb have similar structure. Moreover, homologous sequence alignment and evolutionary analysis of all four genes were clustered with Seriola dumerili. The tissue distribution of these four genes in thirteen tissues of yellowtail kingfish was detected by RT-qPCR. Both lepa and leprot were highly expressed in the brain and ovary, while lepb was highly expressed in the pituitary, gill, muscle, and ovary; lepr was highly expressed in the gill, kidney, and ovary. Additionally, these four genes also played roles in embryo development and early growth and development of larvae and juveniles of yellowtail kingfish. Finally, the function of leptin and leptin-related genes was investigated during fasting and re-feeding adaption of yellowtail kingfish. The results showed that these four genes have different regulation functions in five tissues; for example, the mRNA levels of lepa, lepr, and leprot in the brain decreased during fasting and immediately increased after re-feeding, while the mRNA level of lepb did not show significant fluctuation during starvation but significantly lowered after re-feeding. However, lepa and lepb mRNA levels were significantly elevated during fasting and returned to control levels after re-feeding, and there were no significant changes in the expression of lepr and leprot in the liver during fasting and after re-feeding. Moreover, the body mass of fish in the experimental group was measured, and compensatory growth was found after the resumption of feeding. These results suggested that leptin and receptor genes play different functions in different tissues to regulate the physiological state of fish in food deficiency and gain processes.


Assuntos
Jejum , Leptina , Perciformes , Receptores para Leptina , Animais , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Leptina/genética , Leptina/metabolismo , Perciformes/genética , Perciformes/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Filogenia , Regulação da Expressão Gênica/fisiologia , Sequência de Aminoácidos , Feminino
7.
Br J Nutr ; : 1-24, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35924344

RESUMO

The sulphur amino acids methionine (Met) and cysteine (Cys) and their derivative taurine (Tau) are metabolically active molecules with interlinked roles in nutritional requirements. Deficiencies in these nutrients are linked to poor growth and health; however, the impacts of these deficiencies on organ structure and function are largely unknown. This study examined the effects of dietary Met, Cys and Tau fed at different levels on yellowtail kingfish (YTK) liver histology and surface colour, plasma biochemistry and posterior intestine histology. Samples were collected from two dose-response feeding trials that quantified (1) the Tau requirement and sparing effect of Met by feeding YTK diets containing one of seven levels of Tau at one of two levels of Met and (2) the Met requirement and sparing effect of Cys by feeding YTK diets containing one of five levels of Met at one of two levels of Cys. YTK fed inadequate levels of dietary Met, Cys and Tau exhibited thicker bile ducts, less red livers, more intestinal acidic goblet cell mucus and supranuclear vacuoles and less posterior intestinal absorptive surface area. Further, thicker bile ducts correlated with less red livers (a*, R), whereas increased hepatic fat correlated with a liver yellowing (b*). Our results indicate a shift towards histological properties and functions indicative of improved intrahepatic biliary condition, posterior intestinal nutrient absorption and homoeostasis of YTK fed adequate amounts of Met, Cys and Tau. These findings may assist in formulating aquafeed for optimised gastrointestinal and liver functions and maintaining good health in YTK.

8.
Fish Shellfish Immunol ; 124: 280-288, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35421575

RESUMO

A pseudotuberculosis pathogen, Photobacterium damselae subsp. piscicida (Pdp), has caused enormous economic damage to yellowtail aquaculture in Japan. The Ivy gene has been discovered in plasmid of Pdp, and it has been proposed that it may help bacteria evade lysozyme-mediated lysis during interaction with an animal host. However, the lysozyme-inhibiting activity of Pdp-derived Ivy (Ivy-Pdp) is unknown, and it is unclear whether it acts as a virulence factor for host biophylaxis. In this study, the inhibitory effect of Ivy-Pdp on lysozyme was evaluated by expressing and purifying the recombinant Ivy-Pdp protein (rIvy-Pdp). The rIvy-Pdp protein inhibited hen egg white lysozyme activity in an rIvy-Pdp-concentration-dependent manner, and its inhibitory effect was similar under different temperature and pH conditions. The serum and skin mucus of the yellowtail (which is the host species of Pdp), Japanese flounder, and Nile tilapia showed bacteriolytic activity. In contrast, the addition of rIvy-Pdp inhibited the lytic activity in the serum of these fish species. In particular, it significantly inhibited lytic activity in the serum and skin mucus of Nile tilapia. On the basis of these results, we suggest that Ivy-Pdp is a temperature- and pH-stable lysozyme inhibitor. Additionally, Ivy-Pdp inhibited the lytic activity of lysozyme, which is involved in host biophylaxis. In summary, we inferred that Ivy-Pdp is an important factor that diminishes the sterilization ability of C-type lysozyme when Pdp infects the host.


Assuntos
Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Perciformes , Animais , Aquicultura , Doenças dos Peixes/microbiologia , Muramidase/genética , Muramidase/metabolismo , Photobacterium/genética
9.
Mar Drugs ; 20(5)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35621974

RESUMO

Praziquantel (PZQ) provides an effective treatment against monogenean parasitic infestations in finfish. However, its use as an in-feed treatment is challenging due to palatability issues. In this study, five formulations of PZQ beads (1−4 mm) were developed using marine-based polymers, with allicin added as a flavouring agent. All formulations attained PZQ loading rates ≥74% w/w, and the beads were successfully incorporated into fish feed pellets at an active dietary inclusion level of 10 g/kg. When tested for palatability and digestibility in small yellowtail kingfish, the PZQ-loaded beads produced with alginate-chitosan, alginate-Cremophor® RH40, and agar as carriers resulted in high consumption rates of 99−100% with no digesta or evidence of beads in the gastrointestinal tract (GIT) of fish fed with diets containing either formulation. Two formulations produced using chitosan-based carriers resulted in lower consumption rates of 68−75%, with undigested and partly digested beads found in the fish GIT 3 h post feeding. The PZQ-loaded alginate-chitosan and agar beads also showed good palatability in large (≥2 kg) yellowtail kingfish infected with gill parasites and were efficacious in removing the parasites from the fish, achieving >90% reduction in mean abundance relative to control fish (p < 0.001). The two effective formulations were stable upon storage at ambient temperature for up to 18 months, showing residual drug content >90% compared with baseline levels. Overall, the palatability, efficacy and stability data collected from this study suggest that these two PZQ particulate formulations have potential applications as in-feed anti-parasitic medications for the yellowtail kingfish farming industry.


Assuntos
Anti-Helmínticos , Quitosana , Perciformes , Ágar , Alginatos , Animais , Anti-Helmínticos/farmacologia , Aquicultura , Peixes , Praziquantel/farmacologia , Praziquantel/uso terapêutico
10.
Fish Shellfish Immunol ; 116: 12-18, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33965526

RESUMO

Triploid induction is a promising biotechnique that could be used to enhance aquaculture yields in the near future. However, studies conducted with several fish species have demonstrated that the presence of an extra set of chromosomes may result in deleterious health effects. Furthermore, studies of fish immune responses still need to be conducted before these specimens can be readily commercialized. In the study presented herein, we evaluated the effects of triploid induction on hematology, erythrocyte morphometry and morphology, phagocytosis, and the expression levels of IL-1ß and TGF-ß using specimens of the Neotropical species, Astyanax altiparanae. In general, the cell counts of erythrocytes, leukocytes, and neutrophils in triploid fish were lower than those in diploid fish. The erythrocytes of triploid fish were larger than those found in diploid fish, but also demonstrated considerably higher frequencies of cellular and nuclear abnormalities. Although not statistically significant, triploid induction resulted in a phagocytic capacity (PC) 20% lower than that found with diploid fish. No notable differences were observed in phagocytic index (PI). Gene expression levels for the cytokine IL-1 were lower in tissues from the head kidney, liver, and spleen of triploid fish with respect to diploid fish. Gene expression levels of TGF-ß were lower only in the spleen of triploids compared to diploids. In conclusion, triploid induction resulted in A. altiparanae specimens with immune impairments and potentially lower resistances to disease and low-quality environments.


Assuntos
Characidae , Imunidade Inata , Triploidia , Animais , Characidae/sangue , Characidae/genética , Characidae/imunologia , Eritrócitos , Feminino , Proteínas de Peixes/genética , Testes Hematológicos , Interleucina-1beta/genética , Leucócitos/imunologia , Masculino , Fagocitose , Saccharomyces cerevisiae , Fator de Crescimento Transformador beta/genética
11.
J Appl Microbiol ; 131(5): 2528-2538, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33945191

RESUMO

AIMS: This study evaluated the microbial viability of fish gut microbiota in both digesta (faecal) and mucosal samples using a modified propidium monoazide (PMA) protocol, followed by 16S ribosomal RNA (rRNA) gene sequencing. METHODS AND RESULTS: Digesta and gut mucosal samples from farmed yellowtail kingfish (Seriola lalandi) were collected and a modified PMA treatment was applied prior to DNA extraction to differentiate both active and nonviable microbial cells in the samples. All samples were then sequenced using a standard 16S rRNA approach. The digesta and mucosal samples contained significantly different bacterial communities, with a higher diversity observed in digesta samples. In addition, PMA treatment significantly reduced the microbial diversity and richness of digesta and mucosal samples and depleted bacterial constituents typically considered to be important within fish, such as Lactobacillales and Clostridales taxa. CONCLUSIONS: These findings suggest that important bacterial members may not be active in the fish gut microbiota. In particular, several beneficial lactic acid bacteria (LAB) were identified as nonviable bacterial cells, potentially influencing the functional potential of the fish microbiota. SIGNIFICANCE AND IMPACTS OF THE STUDY: Standardizing the methods for characterizing the fish microbiota are paramount in order to compare studies. In this study, we showed that both sample type and PMA treatment influence the bacterial communities found in the fish gut microbiota. Our findings also suggest that several microbes previously described in the fish gut may not be active constituents. As a result, these factors should be considered in future studies to better evaluate the active bacterial communities associated with the host.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Bactérias/genética , DNA Bacteriano/genética , Viabilidade Microbiana , RNA Ribossômico 16S/genética
12.
Biol Conserv ; 256: 108995, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34580542

RESUMO

COVID-19 restrictions have led to an unprecedented global hiatus in anthropogenic activities, providing a unique opportunity to assess human impact on biological systems. Here, we describe how a national network of acoustic tracking receivers can be leveraged to assess the effects of human activity on animal movement and space use during such global disruptions. We outline variation in restrictions on human activity across Australian states and describe four mechanisms affecting human interactions with the marine environment: 1) reduction in economy and trade changing shipping traffic; 2) changes in export markets affecting commercial fisheries; 3) alterations in recreational activities; and 4) decline in tourism. We develop a roadmap for the analysis of acoustic tracking data across various scales using Australia's national Integrated Marine Observing System (IMOS) Animal Tracking Facility as a case study. We illustrate the benefit of sustained observing systems and monitoring programs by assessing how a 51-day break in white shark (Carcharodon carcharias) cage-diving tourism due to COVID-19 restrictions affected the behaviour and space use of two resident species. This cessation of tourism activities represents the longest break since cage-diving vessels started day trips in this area in 2007. Long-term monitoring of the local environment reveals that the activity space of yellowtail kingfish (Seriola lalandi) was reduced when cage-diving boats were absent compared to periods following standard tourism operations. However, white shark residency and movements were not affected. Our roadmap is globally applicable and will assist researchers in designing studies to assess how anthropogenic activities can impact animal movement and distributions during regional, short-term through to major, unexpected disruptions like the COVID-19 pandemic.

13.
J Therm Biol ; 99: 103023, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34420646

RESUMO

This study determined the physiological and metabolic responses of cultivated Yellowtail Kingfish (Seriola lalandi) juveniles in accordance with their recent thermal history. The fish were acclimated at 20, 23, 26, 29 and 32 °C for 21 days to determine the final preferred temperature, thermal tolerance and the effect of acclimation temperatures on their oxygen uptake and aerobic scope. The final preferred temperature of juveniles was established at 26 °C. The critical thermal maximum (CTmax) ranged from 34.2 to 36.9 °C, while the critical thermal minimum (CTmin) ranged from 10.9 to 17.3 °C, depending on acclimation temperature. With the CTmax and CTmin values, the thermal window was determined to have an area of 258°C2, which is characteristic of subtropical organisms. Although, the metabolic rate was relatively constant (ranging 390.6-449.8 mg O2 kg-0.8 h-1) between 20 and 26 °C (Q10 = 1.6, 1.0), an increase to 544.8 mg O2 kg-0.8 h-1 at 29 °C (Q10 = 1.9) and decrease of 478.4 mg O2 kg-0.8 h-1 at 32 °C (Q10 = 0.6) were observed. The maximum value obtained for aerobic scope was 310.9 mg O2 kg-0.8 h-1 at 26 °C. These results suggest that the acclimation temperature of 26 °C is an optimum thermal condition for a physiological and metabolic performance of yellowtail kingfish juveniles. On the contrary, the response observed during the evaluation of critical temperatures, oxygen uptake and aerobic scope indicated that yellowtail kingfish in the juvenile state could be vulnerable when it experiences for long periods (e.g., >21 days) temperatures above 29 °C. According to our results, the thermoregulatory behaviour of yellowtail kingfish in the juvenile stages could be one of the most important mechanisms to maintain its optimal physiological performance by actively selecting a stable thermal environment close to 26 °C. In addition, it was determined the limits of the pejus state of juvenile yellowtail kingfish at 29 °C, where an increase of oxygen uptake to maintain the aerobic energy metabolism was observed, this could certainly affect the growth of juveniles in culture systems if they do not return in a thermal range of 23-26 °C. These results can contribute to infer the different effects of acclimation temperature on the growth, thermal tolerance and respiratory capacity of S. lalandi juveniles on aquaculture systems.


Assuntos
Aclimatação , Peixes/metabolismo , Consumo de Oxigênio , Oxigênio/metabolismo , Termotolerância , Criação de Animais Domésticos , Animais , Temperatura
14.
Fish Shellfish Immunol ; 92: 308-314, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31200073

RESUMO

The aims of this study were to determine the presence of phenolic compounds in Hawthorn Crataegus mexicana, species native to Mexico, nanoencapsulated (CmNano) with maltodextrin at 100 and 170 °C (CmNano100 and CmNano170) and its antioxidant and immunological effects in Longfin yellowtail Seriola rivoliana leukocytes. The phytochemical study revealed an important level of total phenolic (TPC), flavonoid (TFC) and tannin (CTC) contents in CmNano100, which correlated with a strong antioxidant capacity. CmNano100 or 170 were safe or not cytotoxic for head-kidney (HKL) and peripheral blood (PBL) leukocytes. The in vitro study demonstrated that CmNano increased the percentage of phagocytic cells, stimulated the production of reactive oxygen species, and modulated antioxidant ability by increasing superoxide dismutase activity in leukocytes with respect to the control group. In addition, CmNano100 also increased the transcription of proinflammatory cytokine IL-1ß and down-regulated MyD88 and TNF-α mRNA transcription. These results suggest that maltodextrin nanoencapsulates protected and maintained the antioxidant properties of C. mexicana. In addition, they enhanced antioxidant and immunological parameters in Longfin yellowtail S. rivoliana leukocytes. Therefore, this study provides novel insights of CmNano for its potential application as functional food in aquaculture.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antioxidantes/farmacologia , Peixes/imunologia , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Animais , Crataegus , Peixes/metabolismo , Temperatura Alta , Leucócitos/imunologia , Nanocápsulas/administração & dosagem , Fenóis/administração & dosagem , Extratos Vegetais/administração & dosagem
15.
Gen Comp Endocrinol ; 282: 113208, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31226255

RESUMO

We developed a specific competitive enzyme-linked immunosorbent assay (ELISA) for yellowtail kingfish (Seriola lalandi) follicle stimulating hormone (FSH). We previously produced a full-length single chain recombinant yellowtail kingfish FSH using the Pichia pastoris expression system. We used the same method to produce the ß subunit of the hormone, against which polyclonal antibodies were raised in rabbits. We first confirmed immunoreactivity of the polyclonal antibodies with the recombinant full length FSH and FSHß as well as plasma and pituitary FSH of sexually immature and mature yellowtail kingfish by Western blot analysis. We then developed a precise and reproducible ELISA for yellowtail kingfish FSH and validated the assay in plasma and pituitary extracts. The intra- and inter-assay coefficients of variation was <2.2% and 10.2%, respectively. The sensitivity of the assay was 78 pg/ml. For further validation of the assay, we measured the plasma FSH in immature yellowtail kingfish treated with increasing doses (blank, 50, 100 and 150 µg/kg) of kisseptin2-10 peptide from a previous study. The dose response observed in treated females was not significant, however the increased plasma FSH levels coincided with the significantly higher estradiol levels we previously reported in the treated groups. We assessed the applicability of the assay in measuring circulating FSH in other species. We observed parallelism between the linearized FSH standard curve and displacement curves of serially diluted plasma from Atlantic bluefin tuna (Thunnus thynnus) and tilapia (Oreochromis niloticus). We also observed similar parallelism with full length recombinant giant grouper (Epinephelus lanceolatus) FSH. The ELISA we developed for yellowtail kingfish FSH will be useful in understanding the reproductive biology of the species as well as enhancing its aquaculture.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Hormônio Foliculoestimulante/metabolismo , Gonadotropinas/metabolismo , Perciformes/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Anticorpos/farmacologia , Ligação Competitiva , Feminino , Hormônio Foliculoestimulante/sangue , Coelhos , Padrões de Referência , Reprodutibilidade dos Testes
16.
BMC Genomics ; 19(1): 31, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29310588

RESUMO

BACKGROUND: The assembly and annotation of a genome is a valuable resource for a species, with applications ranging from conservation genomics to gene discovery. Genomic resource development is especially important for species in culture, such as the California Yellowtail (Seriola dorsalis), the likely candidate for the establishment of commercial offshore aquaculture production in southern California. Genomic resource development for this species will improve the understanding of sex and other phenotypic traits, and allow for rapid increases in genetic improvement for and economic gain in culture production. RESULTS: We describe the assembly and annotation of the S. dorsalis genome, and present resequencing data from 45 male and 45 female wild-caught S. dorsalis used to identify a sex-determining region and marker in this species. The genome assembly captured approximately 93% of the total 685 MB genome with an average coverage depth of 180×. Using the assembled genome, resequencing data from the 90 fish were aligned to place boundaries on the sex-determining region. Sex-specific markers were developed based on a female-specific, 61 nucleotide deletion identified in that region. We hypothesize that Estradiol 17-beta-dehydrogenase is the putative sex-determining gene and propose a plausible genetic mechanism for ZW sex determination in S. dorsalis involving a female-specific deletion of a transcription factor binding motif that may be targeted by Sox3. CONCLUSIONS: Understanding the mechanism of sex determination and development of assays to determine sex is critical both for management of wild fisheries and for development of efficient and sustainable aquaculture practices. In addition, this genome assembly for S. dorsalis will be a substantial resource for a variety of future research applications.


Assuntos
Peixes/genética , Genoma , Genômica , Processos de Determinação Sexual/genética , Animais , Sítios de Ligação , Biologia Computacional/métodos , Bases de Dados Genéticas , Peixes/metabolismo , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Genômica/métodos , Mutação INDEL , Anotação de Sequência Molecular , Motivos de Nucleotídeos , Ligação Proteica , Fatores de Transcrição
17.
Glob Chang Biol ; 24(9): 4368-4385, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29790239

RESUMO

Ocean warming and acidification are serious threats to marine life; however, their individual and combined effects on large pelagic and predatory fishes are poorly understood. We determined the effects of projected future temperature and carbon dioxide (CO2 ) levels on survival, growth, morphological development and swimming performance on the early life stages of a large circumglobal pelagic fish, the yellowtail kingfish Seriola lalandi. Eggs, larvae and juveniles were reared in cross-factored treatments of temperature (21 and 25°C) and pCO2 (500 and 985 µatm) from fertilisation to 25 days post hatching (dph). Temperature had the greatest effect on survival, growth and development. Survivorship was lower, but growth and morphological development were faster at 25°C, with surviving fish larger and more developed at 1, 11 and 21 dph. Elevated pCO2 affected size at 1 dph, but not at 11 or 21 dph, and did not affect survival or morphological development. Elevated temperature and pCO2 had opposing effects on swimming performance at 21 dph. Critical swimming speed (Ucrit ) was increased by elevated temperature but reduced by elevated pCO2 . Additionally, elevated temperature increased the proportion of individuals that responded to a startle stimulus, reduced latency to respond and increased maximum escape speed, potentially due to the more advanced developmental stage of juveniles at 25°C. By contrast, elevated pCO2 reduced the distance moved and average speed in response to a startle stimulus. Our results show that higher temperature is likely to be the primary driver of global change impacts on kingfish early life history; however, elevated pCO2 could affect critical aspects of swimming performance in this pelagic species. Our findings will help parameterise and structure fisheries population dynamics models and improve projections of impacts to large pelagic fishes under climate change scenarios to better inform adaptation and mitigation responses.


Assuntos
Dióxido de Carbono/efeitos adversos , Temperatura Alta/efeitos adversos , Perciformes/fisiologia , Água do Mar/química , Natação , Animais , Oceanos e Mares , Perciformes/crescimento & desenvolvimento
18.
Fish Shellfish Immunol ; 77: 71-82, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29567135

RESUMO

The purpose of this study was to characterize the TLR9 gene from yellowtail (Seriola lalandi) and evaluate its functional activity using the class B Cytosine-phosphate-guanine-oligodeoxynucleotide2006 (CpG-ODN2006) in an in vivo experiment after one-week immunostimulation. The gene expressions of TLR9, Immunoglobulin M (IgM), antimicrobial peptides and cytokines were evaluated by real time PCR, and humoral immune parameters were analyzed in serum. The TLR9 nucleotide sequence from yellowtail was obtained using the whole-genome shotgun sequencing method and bioinformatics tools. The yellowtail full-length cDNA sequence of SlTLR9 was 3789 bp in length, including a 66-bp 5'-untranslated region (UTR), a 3'-UTR of 528 bp, and an open reading frame (ORF) of 3192 bp translatable to 1064 amino acid showing a high degree of similarity with the counterparts of other fish species and sharing common structural architecture of the TLR family, including LRR domains, one C-terminal LRR region, and a TIR domain. Gene expression studies revealed the constitutive expression of TLR9 mRNA in all analyzed tissues; the highest levels were observed in intestine, liver and spleen where they play an important role in the fish immune system. The expression levels of TLR9 after B class CpG-ODN2006 (the main TLR9-agonist) was significantly up-regulated in all analyzed tissues, with the high expression observed in spleen followed by intestine and skin. The CpG-B has been shown as a potent B cell mitogen, and interestingly, IgM mRNA transcript was up-regulated in spleen and intestine, which was highly correlated with TLR9 after CpG-ODN2006 stimulation. The antimicrobial peptides, piscidin and NK-lysine, were up-regulated in spleen and gill after CpG-ODN2006 injection with a high correlation (r ≥ 0.82) with TLR9 gene expression. Cytokine genes were up-regulated in spleen, intestine and skin after CpG-ODN was compared with the control group. No significant correlation was observed between TLR9 and IL-1ß, TNF-α and Mx gene expressions. The results showed that CpG-ODN2006 intraperitoneal injection enhanced lysozyme, peroxidase and superoxide dismutase activities in serum and demonstrated that CpG-ODN2006 can induce a specific immune response via TLR9 in which IgM and antimicrobial peptides must have an important role in the defense mechanisms against infections in yellowtail.


Assuntos
Imunidade Humoral/genética , Imunidade Inata/genética , Perciformes/genética , Perciformes/imunologia , Transdução de Sinais/imunologia , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/imunologia , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos , Sequência de Bases , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica/imunologia , Imunoglobulina M/imunologia , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/imunologia , Filogenia , Transdução de Sinais/genética , Receptor Toll-Like 9/química
19.
J Fish Dis ; 40(11): 1497-1509, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28422295

RESUMO

Neobenedenia melleni is a monogenean parasite that causes significant mortality and economic losses in fish aquaculture. Changes in the antigenic composition of this parasite occur during its developmental stages. In this study, we evaluated humoral parameters in serum and transcriptional immune responses of yellowtail naturally infected with N. melleni. In addition, in vitro assays were performed to study the stimulatory effects of antigens from larvae and adults on spleen leucocytes from non-infected fish at 6 and 24 h post-stimulation. The results showed enhanced total protein, myeloperoxidase and antiprotease activities in N. melleni-infected fish compared with non-infected ones. The induction of Toll-like receptors (TLRs) and pro-inflammatory cytokines in spleen leucocytes during natural infection with N. melleni suggests that these immune-related genes play an important role in the initiation of the immune defence mechanism for controlling parasite infection. Interestingly, the magnitude of in vitro responses of spleen leucocytes was dependent on the parasitic stage. An important stimulation of gene expression by adult antigens on spleen leucocytes was observed. Differential expression patterns of TLRs and target cytokines in yellowtail leucocytes in both in vivo and in vitro studies suggest that the quality of yellowtail immune response is conditioned by N. melleni development.


Assuntos
Antígenos de Helmintos/imunologia , Doenças dos Peixes/imunologia , Imunidade Humoral , Imunidade Inata , Perciformes , Trematódeos/imunologia , Infecções por Trematódeos/veterinária , Animais , Citocinas/genética , Citocinas/metabolismo , Doenças dos Peixes/parasitologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Larva/genética , Larva/imunologia , Leucócitos/metabolismo , Baço/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Trematódeos/crescimento & desenvolvimento , Infecções por Trematódeos/imunologia , Infecções por Trematódeos/parasitologia
20.
Fish Shellfish Immunol ; 55: 281-92, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27238429

RESUMO

Interleukin (IL) -12 is a heterodimeric cytokine mainly produced by monocytes, macrophages, and dendritic cells in mammals. IL-12p70 composed of IL-12p35 and IL-12p40, is known to play a crucial role in promoting cell-mediated immunity (CMI) through Th1 differentiation and IFN-γ production. Although two types of IL-12p35 (p35a, p35b) and three types of IL-12p40 (p40a, p40b and p40c) have been identified in several fish species, the knowledge on functional characteristics of teleost IL-12 is still limited. In the present study, we cloned two types of IL-12p35 and three types of IL-12p40 genes in amberjack and yellowtail, and analyzed their expressions in response to stimulation with Nocardia seriolae in amberjack. As a result, four types of IL-12 (IL-12p35a, p35b, p40a and p40b) and IFN-γ mRNA were increased by live-N. seriolae stimulation but not by formalin-killed N. seriolae, suggesting that four types of IL-12 (p35, p35b, p40a and p40c) participate in promoting CMI. Subsequently, we produced six types of recombinant IL-12p70 (rIL12p70) protein in insect cells. Head kidney leukocytes were cultured with formalin-killed N. seriolae and six types of rIL-12p70 to elucidate the role of amberjack IL-12p70 in induction of CMI. After stimulation, IFN-γ expression was elevated whereas IL-10 expression was suppressed in Head kidney leukocytes stimulated with four types of rIL-12 (p40a/p35a, p40c/p35a, p40a/p35b, p40a/p35b). On the other hand, two types of rIL-12 (p40b/p35a, p40b/p35b) only elicited down regulation of IL-10 expression. These results indicate that all amberjack IL-12p70 isoforms are involved in Th1 -differentiation and promotion of CMI with different manners. Fish IL-12 has a potential for the promising vaccine adjuvant.


Assuntos
Infecções por Actinomycetales/veterinária , Vacinas Bacterianas/imunologia , Doenças dos Peixes/terapia , Proteínas de Peixes/genética , Interleucina-12/genética , Nocardiaceae/imunologia , Perciformes , Infecções por Actinomycetales/microbiologia , Infecções por Actinomycetales/terapia , Sequência de Aminoácidos , Animais , Doenças dos Peixes/microbiologia , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Interleucina-12/química , Interleucina-12/metabolismo , Subunidade p35 da Interleucina-12/genética , Subunidade p35 da Interleucina-12/metabolismo , Subunidade p40 da Interleucina-12/genética , Subunidade p40 da Interleucina-12/metabolismo , Filogenia , Alinhamento de Sequência/veterinária , Vacinas Atenuadas/imunologia , Vacinas de Produtos Inativados/imunologia , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA