Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(34): e2404726121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39145926

RESUMO

Self-healing covalent adaptable networks (CANs) are not only of fundamental interest but also of practical importance for achieving carbon neutrality and sustainable development. However, there is a trade-off between the mobility and cross-linking structure of CANs, making it challenging to develop CANs with excellent mechanical properties and high self-healing efficiency. Here, we report the utilization of a highly dynamic four-arm cross-linking unit with an internally catalyzed oxime-urethane group to obtain CAN-based ionogel with both high self-healing efficiency (>92.1%) at room temperature and superior mechanical properties (tensile strength 4.55 MPa and toughness 13.49 MJ m-3). This work demonstrates the significant potential of utilizing the synergistic electronic, spatial, and topological effects as a design strategy for developing high-performance materials.

2.
Proc Natl Acad Sci U S A ; 120(15): e2301009120, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011185

RESUMO

In the state-of-the-art membrane industry, membranes have linear life cycles and are commonly disposed of by landfill or incineration, sacrificing their sustainability. To date, little or no thought is given in the design phase to the end-of-life management of membranes. For the first time, we have innovated high-performance sustainable membranes, which can be closed-loop recycled after long-term usage for water purification. By synergizing membrane technology and dynamic covalent chemistry, covalent adaptable networks (CANs) with thermally reversible Diels-Alder (DA) adducts were synthesized and employed to fabricate integrally skinned asymmetric membranes via the nonsolvent-induced phase separation technique. Due to the stable and reversible features of CAN, the closed-loop recyclable membranes exhibit excellent mechanical properties and thermal and chemical stabilities as well as separation performance, which are comparable to or even higher than the state-of-the-art nonrecyclable membranes. Moreover, the used membranes can be closed-loop recycled with consistent properties and separation performance by depolymerization to remove contaminants, followed by refabrication into new membranes through the dissociation and reformation of DA adducts. This study may fill in the gaps in closed-loop recycling of membranes and inspire the advancement of sustainable membranes for a green membrane industry.

3.
Proc Natl Acad Sci U S A ; 119(12): e2120019119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35298335

RESUMO

Experimental robobiological physics can bring insights into biological evolution. We present a development of hybrid analog/digital autonomous robots with mutable diploid dominant/recessive 6-byte genomes. The robots are capable of death, rebirth, and breeding. We map the quasi-steady-state surviving local density of the robots onto a multidimensional abstract "survival landscape." We show that robot death in complex, self-adaptive stress landscapes proceeds by a general lowering of the robotic genetic diversity, and that stochastically changing landscapes are the most difficult to survive.


Assuntos
Robótica , Animais , Mamíferos , Modelos Genéticos , Mutação , Dinâmica Populacional , Probabilidade , Seleção Genética
4.
Nano Lett ; 24(34): 10605-10613, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39145462

RESUMO

A metal-organic frameworks (MOFs)-in-MOF nanovehicle (160 nm), which was constructed with newly prepared ultrasmall Cu(I)Cu(II)-BTC MOFs (UCMs, 2.95 nm) loaded with doxorubicin (DOX) and a nuclear localization signal (NLS) peptide as multicores (UCMDNs) and ZIF-8 as the shell MOF, was proposed to cross layers of biological barriers with adaptive size evolution capacity for achieving efficient nucleus-targeted drug delivery. It first enhanced tumor tissue penetration through its larger nanosize effect. Then the acidic tumor environment made the ZIF-8 shell degrade, releasing small-sized UCMDNs to enter into the cell and into the nucleus under the guidance of NLS. Furthermore, due to the distinct surface structural characteristics of UCMs, UCMDNs remained stable in the cytoplasm and collapsed in the nucleus due to the DOX-DNA interaction to deliver DOX precisely. It showed superior performance in the nucleus-directed delivery of DOX (delivery efficiency up to 56.7%) and a high tumor growth inhibition rate (96.4%), offering promising prospects in tumor chemotherapy.


Assuntos
Núcleo Celular , Doxorrubicina , Estruturas Metalorgânicas , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Estruturas Metalorgânicas/química , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Animais , Camundongos , Portadores de Fármacos/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Sinais de Localização Nuclear/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Tamanho da Partícula , Nanopartículas/química , Cobre/química
5.
Small ; : e2406876, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308248

RESUMO

Auxetic foams with a negative Poisson's ratio (NPR) have attracted considerable attention in material engineering due to their outstanding performance in seismic and energy absorption. Nevertheless, thermoplastic auxetic foams are compromised by weak non-covalent crosslinking that diminishes the mechanical strength and durability of foams. Conversely, thermosetting foams with chemical crosslinking, although mechanically robust, face challenges in elaborating auxetic structure and in achieving recyclability. Herein, an alternative approach is proposed to tackle this dilemma by incorporating dynamic disulfide bonds into the polymer network for preparing a thermosetting polyurethane foam with covalent adaptable network. By leveraging the unidirectional multi-effect compression technique, the topological network reorganization of foam is induced, transforming the initial circular open-cell structure into a re-entrant cell structure. This structural transformation endows the foam with stable NPR capability, achieving a minimum Poisson's ratio value of -0.4 within 30% compressive strain. Benefiting from its reinforced network structure, the foam also demonstrates high compressive strength (6.47 MPa) and tensile strength (1.67 MPa). Furthermore, it is recyclable and can be recompressed into thermosetting films. This work offers a straightforward approach to making auxetic thermosetting foams with good mechanical and recyclable properties, which is interesting for the development of high-performance auxetic materials.

6.
Chemistry ; 30(49): e202401728, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38888459

RESUMO

Transitioning towards a circular economy, extensive research has focused on dynamic covalent bonds (DCBs) to pave the way for more sustainable materials. These bonds enable debonding and rebonding on demand, as well as facilitating end-of-life recycling. Acylhydrazone/hydrazone chemistry offers a material with high stability under neutral and basic conditions making it a promising candidate for materials research, though the material is susceptible to acid degradation. However, this degradation under acidic conditions can be exploited, making it widely applicable in self-healing and biomedical fields, with potential for reprocessing and recycling. This review highlights studies exploring the reversibility of acylhydrazone/hydrazone bonds in various polymers, altering their properties, and utilizing them in applications such as self-healing, reprocessing, and recycling. The review also focuses on how the mechanical properties are affected by the presence of dynamic linkages, and methods to improve the mechanical performance.

7.
Macromol Rapid Commun ; : e2400303, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991017

RESUMO

One method to improve the properties of covalent adaptable networks (CANs) is to reinforce them with a fraction of permanent cross-links without sacrificing their (re)processability. Here, a simple method to synthesize poly(n-hexyl methacrylate) (PHMA) and poly(n-lauryl methacrylate) (PLMA) networks containing static dialkyl disulfide cross-links (utilizing bis(2-methacryloyl)oxyethyl disulfide, or DSDMA, as a permanent cross-linker) and dynamic dialkylamino sulfur-sulfur cross-links (utilizing BiTEMPS methacrylate as a dissociative dynamic covalent cross-linker) is presented. The robustness and (re)processability of the CANs are demonstrated, including the full recovery of cross-link density after recycling. The authors also investigate the effect of static cross-link content on the stress relaxation responses of the CANs with and without percolated, static cross-links. As PHMA and PLMA have very different activation energies of their respective cooperative segmental mobilities, it is shown that the dissociative CANs without percolated, static cross-links have activation energies of stress relaxation that are dominated by the dissociation of BiTEMPS methacrylate cross-links rather than by the cooperative relaxations of backbone segments, i.e., the alpha relaxation. In CANs with percolated, static cross-links, the segmental relaxation of side chains, i.e., the beta relaxation, is critical in allowing for large-scale stress relaxation and governs their activation energies of stress relaxation.

8.
Macromol Rapid Commun ; 45(9): e2300735, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38281084

RESUMO

The covalently cross-linked network gives thermosets superior thermal, mechanical, and electrical properties, which, however, squarely makes the large residual stress that is inevitably induced during preparation hardly relieved in the glassy state. In this work, an incredible reduction in residual stress is successfully achieved in bulk thermosets in the glassy state through introducing highly dynamic thiocarbamate bonds by "click" reactions of thiols and isocyanates. Due to the excellent dynamic behaviors of thiocarbamate bonds, local network rearrangement is achieved through thermal stimulation, while the strong 3D cross-linked network is well maintained. Ultimately, a decrease by 44% in residual stress is detected by simply annealing samples at 30 °C below glass transition temperature (Tg), during which they could well maintain more than 98.4% of the storage modulus. After the annealing, more uniform residual stress distribution is also observed, showing a 32% decline in sample standard deviation. However, the residual stress of epoxy resin, a typical thermoset as a reference, changes little even after annealing at Tg. The results prove it a feasible strategy to reduce residual stress in bulk thermosets in the glassy state by introducing proper dynamic covalent bonds.


Assuntos
Vidro , Vidro/química , Temperatura de Transição , Compostos de Sulfidrila/química , Estrutura Molecular , Isocianatos/química , Estresse Mecânico , Temperatura
9.
Macromol Rapid Commun ; : e2400330, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924588

RESUMO

Poly(thiourethane)-based covalent adaptable networks are synthesized by reacting a trimer of hexamethylene diisocyanate (Desmodur N3300) containing isocyanurate groups in its structure with 1,6-hexanedithiol. The catalysts evaluated for this process include dibutyltin dilaurate (DBTDL), lanthanum triflate (La(OTf)3), and a thermal precursor of 1,8-diazabicyclo[5.4.0]undec-7-ene (BGDBU). The use of DBTDL results in the initiation of curing upon mixing, while the other two catalysts exhibit a latency period in the reactive mixture, with curing starting at about 90 °C. Notably, the use of the lanthanum salt produces an additional minor exothermic reaction at 80 °C. This phenomenon corresponds to the trimerization of isocyanates rending isocyanurates, leaving a portion of unreacted thiols. Materials prepared with BGDBU or La(OTf)3 present shorter relaxation times than those prepared with DBTDL. Nevertheless, the materials containing the lanthanum salt do not reach complete relaxation, likely due to the reinforcement of the permanent network through increased isocyanurate content. The formation of isocyanurates produces a stoichiometric imbalance, leaving unreacted thiols. This transforms the exchange process into a dual mechanism involving a dissociative process of thiourethanes to isocyanate and thiol, along with an interchange through thiol attacking the thiourethane group. The materials exhibit good recyclability and self-healing characteristics.

10.
Macromol Rapid Commun ; : e2400312, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860731

RESUMO

Vitrimers, possessing associative covalent adaptable networks, are cross-linked polymers exhibiting malleable (glass-like) feature and recyclable and reprocessable (thermoplastics-like) properties. The dynamic behaviors of vitrimer are dependent on both chain/molecular mobility (glass transition temperature, Tg) and dynamic bond-exchanging reaction rate (topology freezing transition temperature, Tv). This work aims on probing the effect of high Tg on the stress relaxation and physical recyclability of vitrimers, employing a polyimide cross-linked with dynamic ester bonds (Tg: 310 °C) as the example. Due to its high Tg and chain rigidity, the cross-linked polyimide does not exhibit a high extent of stress relaxation behavior at 320 °C (10 °C above its Tg), even though the temperature is much higher than the hypothetical Tv. While raising the processing temperature to 345 °C, the cross-linked polyimide exhibits a stress relaxation time of about 3300 s and physical malleability. Nevertheless, side reactions may occur in the recycling and reprocessing process under the harsh condition (high temperature and high pressure) to alter the thermal properties of the recycled sample. The diffusion control plays a critical role on the topography transition of a vitrimer having a high Tg. The Tg ceiling is noticeable for developments of vitrimers.

11.
Macromol Rapid Commun ; : e2400239, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38794989

RESUMO

Polymeric foams derived from bio-based resources and capable of self-healing and recycling ability are of great demand to fulfill various applications and address environmental concerns related to accumulation of plastic wastes. In this article, a set of polyester-based covalent adaptable biofoams (CABs) synthesized from carbohydrates and other bio-derived precursors under catalyst free conditions to offer a sustainable alternative to conventional toxic isocyanate-based polyurethane foams is reported. The dynamic ß-keto carboxylate linkages present in these biofoams impart self-healing ability and recyclability to these samples. These CABs display adequate tensile properties especially compressive strength (≤123 MPa) and hysteresis behavior. The CABs swiftly stress relax at 150 °C and are reprocessable under similar temperature conditions. These biofoams have displayed potential for use as attachment on solar photovoltaics to augment the output efficiency. These CABs with limited swellability in polar protic solvents and adequate mechanical resilience are suitable for other commodity applications.

12.
Macromol Rapid Commun ; : e2400460, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39047164

RESUMO

Catalyst-free, radical-based reactive processing is used to transform low-density polyethylene (LDPE) into polyethylene covalent adaptable networks (PE CANs) using a dialkylamino disulfide crosslinker, BiTEMPS methacrylate (BTMA). Two versions of BTMA are used, BTMA-S2, with nearly exclusively disulfide bridges, and BTMA-Sn, with a mixture of oligosulfide bridges, to produce S2 PE CAN and Sn PE CAN, respectively. The two PE CANs exhibit identical crosslink densities, but the S2 PE CAN manifests faster stress relaxation, with average relaxation times ∼4.5 times shorter than those of Sn PE CAN over a 130 to 160 °C temperature range. The more rapid dynamics of the S2 PE CAN translate into a shorter compression-molding reprocessing time at 160 °C of only 5 min (vs 30 min for the Sn PE CAN) to achieve full recovery of crosslink density. Both PE CANs are melt-extrudable and exhibit full recovery within experimental uncertainty of crosslink density after extrusion. Both PE CANs are self-healable, with a crack fully repaired and the original tensile properties restored after 30 min for the S2 PE CAN or 60 min for the Sn PE CAN at a temperature slightly above the LDPE melting point and without the assistance of external forces.

13.
Angew Chem Int Ed Engl ; 63(40): e202410245, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38887146

RESUMO

The emergence of covalent adaptable networks (CANs) based on dynamic covalent bonds (DCBs) presents a promising avenue for achieving resource recovery and utilization. In this study, we discovered a dynamic covalent bond called selenacetal, which is obtained through a double click reaction between selenol and activated alkynes. Density functional theory (DFT) calculations demonstrated that the ΔG for the formation of selenoacetals ranges from 12 to 18 kJ mol-1, suggesting its potential for dynamic reversibility. Dynamic exchange experiments involving small molecules and polymers provide substantial evidence supporting the dynamic exchange properties of selenoacetals. By utilizing this highly efficient click reaction, we successfully synthesized dynamic materials based on selenoacetal with remarkable reprocessing capabilities without any catalysts. These materials exhibit chemical recycling under alkaline conditions, wherein selenoacetal (SA) can decompose into active enone selenide (ES) and diselenides. Reintroducing selenol initiates a renewed reaction with the enone selenide, facilitating material recycling and yielding a newly developed dynamic material exhibiting both photo- and thermal responsiveness. The results underscore the potential of selenoacetal polymers in terms of recyclability and selective degradation, making them a valuable addition to conventional covalent adaptable networks.

14.
Angew Chem Int Ed Engl ; : e202411397, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004761

RESUMO

The development of environmentally sustainable processes for polymer recycling is of paramount importance in the polymer industry. In particular, the implementation of chemical recycling for thermoset polymers via covalent adaptable networks (CANs), particularly those based on the dynamic hindered urea bond (HUB), has garnered intensive attention from both the academic and industrial sectors. This interest stems from its straightforward chemical structure and reaction mechanism, which are well-suited for commercial polyurethane and polyurea applications. However, a substantial drawback of these CANs is the requisite use of toxic isocyanate curing agents for their synthesis. Herein, we propose a new HUB synthesis pathway involving thiazolidin-2-one and a hindered amine. This ring-opening reaction facilitates the isocyanate-free formation of a HUB and enables sequential reactions with acrylate and epoxide monomers via thiol-Michael and thiol-epoxy click chemistry. The CANs synthesized using this methodology exhibit superior reprocessability, chemical recyclability, and reutilizability, facilitated by specific catalytic and solvent conditions, through the reversible HUB, thiol-Michael addition, and transesterification processes.

15.
Angew Chem Int Ed Engl ; 63(31): e202405653, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38764409

RESUMO

Dithioacetals are heavily used in organic, material and medical chemistries, and exhibit huge potential to synthesize degradable or recyclable polymers. However, the current synthetic approaches of dithioacetals and polydithioacetals are overwhelmingly dependent on external catalysts and organic solvents. Herein, we disclose a catalyst- and solvent-free acetal-thiol click-like reaction for synthesizing dithioacetals and polydithioacetals. High conversion, higher than acid catalytic acetal-thiol reaction, can be achieved. High universality was confirmed by monitoring the reactions of linear and cyclic acetals (including renewable bio-sourced furan-acetal) with aliphatic and aromatic thiols, and the reaction mechanism of monomolecular nucleophilic substitution (SN1) and auto-protonation (activation) by thiol was clarified by combining experiments and density functional theory computation. Subsequently, we utilize this reaction to synthesize readily recyclable polydithioacetals. By simple heating and stirring, linear polydithioacetals with M ‾ ${\bar M}$ w of ~110 kDa were synthesized from acetal and dithiol, and depolymerization into macrocyclic dithioacetal and repolymerization into polydithioacetal can be achieved; through reactive extrusion, a semi-interpenetrating polymer dynamic network with excellent mechanical properties and continuous reprocessability was prepared from poly(vinyl butyral) and pentaerythritol tetrakis(3-mercaptopropionate). This green and high-efficient synthesis method for dithioacetals and polydithioacetals is beneficial to the sustainable development of chemistry.

16.
Angew Chem Int Ed Engl ; 63(33): e202406708, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38828797

RESUMO

Covalent adaptable networks (CANs), leveraging the dynamic exchange of covalent bonds, emerge as a promising material to address the challenge of irreversible cross-linking in thermosetting polymers. In this work, we explore the introduction of a catalyst-free and associative C=C/C=N metathesis reaction into thermosetting polyurethanes, creating CANs with superior stability, solvent resistance, and thermal/mechanical properties. By incorporating this dynamic exchange reaction, stress-relaxation is significantly accelerated compared to imine-bond-only networks, with the rate adjustable by modifying substituents in the ortho position of the dynamic double bonds. The obtained plasticity enables recycle without altering the chemical structure or mechanical properties, and is also found to be vital for achieving shape memory functions with complex spatial structures. This metathesis reaction as a new dynamic crosslinker of polymer networks has the potential to accelerate the ongoing exploration of malleable and functional thermoset polymers.

17.
Chembiochem ; 24(20): e202300149, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37220343

RESUMO

Successful stem cell applications could have a significant impact on the medical field, where many lives are at stake. However, the translation of stem cells to the clinic could be improved by overcoming challenges in stem cell transplantation and in vivo retention at the site of tissue damage. This review aims to showcase the most recent insights into developing hydrogels that can deliver, retain, and accommodate stem cells for tissue repair. Hydrogels can be used for tissue engineering, as their flexibility and water content makes them excellent substitutes for the native extracellular matrix. Moreover, the mechanical properties of hydrogels are highly tuneable, and recognition moieties to control cell behaviour and fate can quickly be introduced. This review covers the parameters necessary for the physicochemical design of adaptable hydrogels, the variety of (bio)materials that can be used in such hydrogels, their application in stem cell delivery and some recently developed chemistries for reversible crosslinking. Implementing physical and dynamic covalent chemistry has resulted in adaptable hydrogels that can mimic the dynamic nature of the extracellular matrix.


Assuntos
Hidrogéis , Engenharia Tecidual , Hidrogéis/química , Engenharia Tecidual/métodos , Matriz Extracelular , Células-Tronco
18.
Chemistry ; 29(18): e202203560, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36510753

RESUMO

Dynamic covalent chemistry opens up great opportunities for a sustainable society by producing reprocessable networks of polymers and even thermosets. However, achieving the closed-loop recycling of polymers with high performance remains a grand challenge. The introduction of aromatic monomers and fluorine into covalent adaptable networks is an attractive method to tackle this challenge. Therefore, we present a facile and universal strategy to focus on the design and applications of polyimine vitrimers containing trifluoromethyl diphenoxybenzene backbones in applications of dynamic covalent polymers. In this study, fluorine-containing polyimine vitrimer networks (FPIVs) were fabricated, and the results revealed that the FPIVs not only exhibited good self-healability, malleability and processability without the aid of any catalyst, but also possessed decent mechanical strength, superior toughness and thermal stability. We hope that this work could provide a novel pathway for the design of high-performance polyimine vitrimers by recycling of plastic wastes.

19.
Mol Pharm ; 20(1): 290-302, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36368878

RESUMO

Regulating non-apoptotic cell death of cancer cells provides a promising strategy to overcome apoptosis resistance during cancer treatment. Lipids are essential components to exacerbate several non-apoptotic cell death pathways. In the present study, unsaturated fatty acid (UFA) liposomes prepared with linoleic acid, oleic acid, or α-linolenic acid have the potential to affect lipid metabolism. Notably, UFA liposomes markedly increased cellular reactive oxygen species (ROS) and down-regulated the expression of glutathione peroxidase 4 (GPX4) in tumor cells, resulting in lipid peroxidation, which in turn caused rapid membrane rupture and induced non-apoptotic cell death of tumor cells. Concomitantly, UFA liposomes induced ROS-mediated tumor-associated macrophages toward a tumoricidal phenotype to reverse the immunosuppressive tumor microenvironment. Consequently, UFA liposomes substantially inhibited tumor growth in a melanoma model by promoting lipid peroxidation, inducing non-apoptotic cell death of tumor cells, and increasing infiltration of anti-tumor immune cells at tumor sites. Therefore, UFA liposomes regulate GXP4 to exacerbate lipid peroxidation and provide a versatile liposome platform for enhancing anti-tumor therapy which could be readily extended to the delivery of anticancer agents.


Assuntos
Ácidos Graxos Insaturados , Lipossomos , Lipossomos/metabolismo , Peroxidação de Lipídeos/fisiologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo
20.
Prev Med ; 174: 107619, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37451552

RESUMO

Diabetes seems to be a severe protracted disease or combination of biochemical disorders. A person's blood glucose (BG) levels remain elevated for an extended period because tissues lack and non-reaction to hormones. Such conditions are also causing longer-term obstacles or serious health issues. The medical field handles a large amount of very delicate data that must be handled properly. K-Nearest Neighbourhood (KNN) seems to be a common and straightforward ML method for creating illness threat prognosis models based on pertinent clinical information. We provide an adaptable neuro-fuzzy inference K-Nearest Neighbourhood (AF-KNN) learning-dependent forecasting system relying on patients' behavioural traits in several aspects to obtain our aim. That method identifies the best proportion of neighborhoods having a reduced inaccuracy risk to improve the predicting performance of the final system.


Assuntos
Algoritmos , Diabetes Mellitus , Humanos , Diabetes Mellitus/diagnóstico , Previsões , Análise Multivariada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA