Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.302
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(3): 419-446, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35120662

RESUMO

Adipose tissue, colloquially known as "fat," is an extraordinarily flexible and heterogeneous organ. While historically viewed as a passive site for energy storage, we now appreciate that adipose tissue regulates many aspects of whole-body physiology, including food intake, maintenance of energy levels, insulin sensitivity, body temperature, and immune responses. A crucial property of adipose tissue is its high degree of plasticity. Physiologic stimuli induce dramatic alterations in adipose-tissue metabolism, structure, and phenotype to meet the needs of the organism. Limitations to this plasticity cause diminished or aberrant responses to physiologic cues and drive the progression of cardiometabolic disease along with other pathological consequences of obesity.


Assuntos
Adaptação Fisiológica , Tecido Adiposo/fisiologia , Doença , Saúde , Adipócitos Brancos/metabolismo , Animais , Humanos , Termogênese
2.
Cell ; 182(3): 563-577.e20, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32615086

RESUMO

Adipose tissues dynamically remodel their cellular composition in response to external cues by stimulating beige adipocyte biogenesis; however, the developmental origin and pathways regulating this process remain insufficiently understood owing to adipose tissue heterogeneity. Here, we employed single-cell RNA-seq and identified a unique subset of adipocyte progenitor cells (APCs) that possessed the cell-intrinsic plasticity to give rise to beige fat. This beige APC population is proliferative and marked by cell-surface proteins, including PDGFRα, Sca1, and CD81. Notably, CD81 is not only a beige APC marker but also required for de novo beige fat biogenesis following cold exposure. CD81 forms a complex with αV/ß1 and αV/ß5 integrins and mediates the activation of integrin-FAK signaling in response to irisin. Importantly, CD81 loss causes diet-induced obesity, insulin resistance, and adipose tissue inflammation. These results suggest that CD81 functions as a key sensor of external inputs and controls beige APC proliferation and whole-body energy homeostasis.


Assuntos
Adipogenia/genética , Tecido Adiposo Bege/metabolismo , Metabolismo Energético/genética , Quinase 1 de Adesão Focal/metabolismo , Transdução de Sinais/genética , Células-Tronco/metabolismo , Tetraspanina 28/metabolismo , Adipócitos/metabolismo , Tecido Adiposo Bege/citologia , Tecido Adiposo Bege/crescimento & desenvolvimento , Tecido Adiposo Branco/metabolismo , Adulto , Animais , Ataxina-1/metabolismo , Feminino , Fibronectinas/farmacologia , Quinase 1 de Adesão Focal/genética , Humanos , Inflamação/genética , Inflamação/metabolismo , Resistência à Insulina/genética , Integrinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/metabolismo , RNA-Seq , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Análise de Célula Única , Células-Tronco/citologia , Tetraspanina 28/genética
3.
Genes Dev ; 37(17-18): 781-800, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37798016

RESUMO

Adipose tissue exhibits a remarkable capacity to expand, contract, and remodel in response to changes in physiological and environmental conditions. Here, we describe recent advances in our understanding of how functionally distinct tissue-resident mesenchymal stromal cell subpopulations orchestrate several aspects of physiological and pathophysiological adipose tissue remodeling, with a particular focus on the adaptations that occur in response to changes in energy surplus and environmental temperature. The study of adipose tissue remodeling provides a vehicle to understand the functional diversity of stromal cells and offers a lens through which several generalizable aspects of tissue reorganization can be readily observed.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Humanos , Tecido Adiposo , Obesidade , Células Estromais
4.
Genes Dev ; 37(11-12): 454-473, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37364987

RESUMO

The circadian clock plays an essential role in coordinating feeding and metabolic rhythms with the light/dark cycle. Disruption of clocks is associated with increased adiposity and metabolic disorders, whereas aligning feeding time with cell-autonomous rhythms in metabolism improves health. Here, we provide a comprehensive overview of recent literature in adipose tissue biology as well as our understanding of molecular mechanisms underlying the circadian regulation of transcription, metabolism, and inflammation in adipose tissue. We highlight recent efforts to uncover the mechanistic links between clocks and adipocyte metabolism, as well as its application to dietary and behavioral interventions to improve health and mitigate obesity.


Assuntos
Tecido Adiposo , Relógios Circadianos , Humanos , Tecido Adiposo/fisiologia , Relógios Circadianos/genética , Obesidade , Ritmo Circadiano/genética , Metabolismo Energético
5.
Annu Rev Cell Dev Biol ; 32: 609-631, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27146311

RESUMO

Classically, white adipose tissue (WAT) was considered an inert component of connective tissue but is now appreciated as a major regulator of metabolic physiology and endocrine homeostasis. Recent work defining how WAT develops and expands in vivo emphasizes the importance of specific locations of WAT or depots in metabolic regulation. Interestingly, mature white adipocytes are integrated into several tissues. A new perspective regarding the in vivo regulation and function of WAT in these tissues has highlighted an essential role of adipocytes in tissue homeostasis and regeneration. Finally, there has been significant progress in understanding how mature adipocytes regulate the pathology of several diseases. In this review, we discuss these novel roles of WAT in the homeostasis and regeneration of epithelial, muscle, and immune tissues and how they contribute to the pathology of several disorders.


Assuntos
Adipócitos/metabolismo , Organogênese , Regeneração/fisiologia , Nicho de Células-Tronco , Animais , Doença , Humanos , Modelos Biológicos
6.
Genes Dev ; 36(5-6): 300-312, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35273075

RESUMO

Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor that is a vital regulator of adipogenesis, insulin sensitivity, and lipid metabolism. Activation of PPARγ by antidiabetic thiazolidinediones (TZD) reverses insulin resistance but also leads to weight gain that limits the use of these drugs. There are two main PPARγ isoforms, but the specific functions of each are not established. Here we generated mouse lines in which endogenous PPARγ1 and PPARγ2 were epitope-tagged to interrogate isoform-specific genomic binding, and mice deficient in either PPARγ1 or PPARγ2 to assess isoform-specific gene regulation. Strikingly, although PPARγ1 and PPARγ2 contain identical DNA binding domains, we uncovered isoform-specific genomic binding sites in addition to shared sites. Moreover, PPARγ1 and PPARγ2 regulated a different set of genes in adipose tissue depots, suggesting distinct roles in adipocyte biology. Indeed, mice with selective deficiency of PPARγ1 maintained body temperature better than wild-type or PPARγ2-deficient mice. Most remarkably, although TZD treatment improved glucose tolerance in mice lacking either PPARγ1 or PPARγ2, the PPARγ1-deficient mice were protected from TZD-induced body weight gain compared with PPARγ2-deficient mice. Thus, PPARγ isoforms have specific and separable metabolic functions that may be targeted to improve therapy for insulin resistance and diabetes.


Assuntos
Resistência à Insulina , Tiazolidinedionas , Adipócitos/metabolismo , Animais , Regulação da Expressão Gênica , Resistência à Insulina/genética , Camundongos , PPAR gama/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
7.
Genes Dev ; 35(19-20): 1333-1338, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34531316

RESUMO

The full array of cold-responsive cell types within white adipose tissue that drive thermogenic beige adipocyte biogenesis remains undefined. We demonstrate that acute cold challenge elicits striking transcriptomic changes specifically within DPP4+ PDGFRß+ adipocyte precursor cells, including a ß-adrenergic receptor CREB-mediated induction in the expression of the prothermogenic cytokine, Il33 Doxycycline-inducible deletion of Il33 in PDGFRß+ cells at the onset of cold exposure attenuates ILC2 accumulation and beige adipocyte accrual. These studies highlight the multifaceted roles for adipocyte progenitors and the ability of select mesenchymal subpopulations to relay neuronal signals to tissue-resident immune cells in order to regulate tissue plasticity.


Assuntos
Adipócitos Bege , Adipócitos Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Adrenérgicos/metabolismo , Temperatura Baixa , Imunidade Inata , Linfócitos , Termogênese/genética
8.
Immunity ; 50(1): 121-136.e5, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30594464

RESUMO

Dermal fibroblasts (dFBs) resist infection by locally differentiating into adipocytes and producing cathelicidin antimicrobial peptide in response to Staphylococcus aureus (S. aureus). Here, we show that neonatal skin was enriched with adipogenic dFBs and immature dermal fat that highly expressed cathelicidin. The pool of adipogenic and antimicrobial dFBs declined after birth, leading to an age-dependent loss of dermal fat and a decrease in adipogenesis and cathelidicin production in response to infection. Transforming growth factor beta (TGF-ß), which acted on uncommitted embryonic and adult dFBs and inhibited their adipogenic and antimicrobial function, was identified as a key upstream regulator of this process. Furthermore, inhibition of the TGF-ß receptor restored the adipogenic and antimicrobial function of dFBs in culture and increased resistance of adult mice to S. aureus infection. These results provide insight into changes that occur in the skin innate immune system between the perinatal and adult periods of life.


Assuntos
Envelhecimento/imunologia , Fibroblastos/fisiologia , Pele/metabolismo , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/fisiologia , Gordura Subcutânea/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adipócitos/metabolismo , Adipogenia , Animais , Anti-Infecciosos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Células Cultivadas , Embrião de Mamíferos , Humanos , Imunidade Inata , Camundongos , Catelicidinas
9.
Annu Rev Physiol ; 86: 199-223, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345903

RESUMO

Obesity is epidemic and of great concern because of its comorbid and costly inflammatory-driven complications. Extensive investigations in mice have elucidated highly coordinated, well-balanced interactions between adipocytes and immune cells in adipose tissue that maintain normal systemic metabolism in the lean state, while in obesity, proinflammatory changes occur in nearly all adipose tissue immune cells. Many of these changes are instigated by adipocytes. However, less is known about obesity-induced adipose-tissue immune cell alterations in humans. Upon high-fat diet feeding, the adipocyte changes its well-known function as a metabolic cell to assume the role of an immune cell, orchestrating proinflammatory changes that escalate inflammation and progress during obesity. This transformation is particularly prominent in humans. In this review, we (a) highlight a leading and early role for adipocytes in promulgating inflammation, (b) discuss immune cell changes and the time course of these changes (comparing humans and mice when possible), and (c) note how reversing proinflammatory changes in most types of immune cells, including adipocytes, rescues adipose tissue from inflammation and obese mice from insulin resistance.


Assuntos
Tecido Adiposo , Macrófagos , Camundongos , Humanos , Animais , Adipócitos , Inflamação , Obesidade
10.
Genes Dev ; 34(5-6): 321-340, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32029456

RESUMO

Poly(ADP-ribose) polymerases (PARPs or ARTDs), originally described as DNA repair factors, have metabolic regulatory roles. PARP1, PARP2, PARP7, PARP10, and PARP14 regulate central and peripheral carbohydrate and lipid metabolism and often channel pathological disruptive metabolic signals. PARP1 and PARP2 are crucial for adipocyte differentiation, including the commitment toward white, brown, or beige adipose tissue lineages, as well as the regulation of lipid accumulation. Through regulating adipocyte function and organismal energy balance, PARPs play a role in obesity and the consequences of obesity. These findings can be translated into humans, as evidenced by studies on identical twins and SNPs affecting PARP activity.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Diferenciação Celular , Poli(ADP-Ribose) Polimerases/metabolismo , Metabolismo dos Carboidratos , Humanos , Metabolismo dos Lipídeos/fisiologia
11.
EMBO J ; 42(6): e112202, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36795015

RESUMO

Lipids play a major role in inflammatory diseases by altering inflammatory cell functions, either through their function as energy substrates or as lipid mediators such as oxylipins. Autophagy, a lysosomal degradation pathway that limits inflammation, is known to impact on lipid availability, however, whether this controls inflammation remains unexplored. We found that upon intestinal inflammation visceral adipocytes upregulate autophagy and that adipocyte-specific loss of the autophagy gene Atg7 exacerbates inflammation. While autophagy decreased lipolytic release of free fatty acids, loss of the major lipolytic enzyme Pnpla2/Atgl in adipocytes did not alter intestinal inflammation, ruling out free fatty acids as anti-inflammatory energy substrates. Instead, Atg7-deficient adipose tissues exhibited an oxylipin imbalance, driven through an NRF2-mediated upregulation of Ephx1. This shift reduced secretion of IL-10 from adipose tissues, which was dependent on the cytochrome P450-EPHX pathway, and lowered circulating levels of IL-10 to exacerbate intestinal inflammation. These results suggest an underappreciated fat-gut crosstalk through an autophagy-dependent regulation of anti-inflammatory oxylipins via the cytochrome P450-EPHX pathway, indicating a protective effect of adipose tissues for distant inflammation.


Assuntos
Ácidos Graxos não Esterificados , Oxilipinas , Humanos , Adipócitos/metabolismo , Autofagia/fisiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/farmacologia , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos não Esterificados/farmacologia , Inflamação/genética , Inflamação/metabolismo , Interleucina-10/genética , Oxilipinas/metabolismo
12.
Mol Cell ; 76(5): 811-825.e14, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31628041

RESUMO

Physical contact between organelles is vital to the function of eukaryotic cells. Lipid droplets (LDs) are dynamic organelles specialized in lipid storage that interact physically with mitochondria in several cell types. The mechanisms coupling these organelles are, however, poorly understood, and the cell-biological function of their interaction remains largely unknown. Here, we discover in adipocytes that the outer mitochondrial membrane protein MIGA2 links mitochondria to LDs. We identify an amphipathic LD-targeting motif and reveal that MIGA2 binds to the membrane proteins VAP-A or VAP-B in the endoplasmic reticulum (ER). We find that in adipocytes MIGA2 is involved in promoting triglyceride (TAG) synthesis from non-lipid precursors. Our data indicate that MIGA2 links reactions of de novo lipogenesis in mitochondria to TAG production in the ER, thereby facilitating efficient lipid storage in LDs. Based on its presence in many tissues, MIGA2 is likely critical for lipid and energy homeostasis in a wide spectrum of cell types.


Assuntos
Adipócitos/metabolismo , Lipogênese/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Células 3T3 , Adipócitos/fisiologia , Animais , Células COS , Diferenciação Celular/fisiologia , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Gotículas Lipídicas/metabolismo , Lipogênese/genética , Proteínas de Membrana/fisiologia , Camundongos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/fisiologia , Triglicerídeos/biossíntese , Proteínas de Transporte Vesicular/metabolismo
13.
Mol Cell ; 76(1): 163-176.e8, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31492633

RESUMO

Sensing nutrient availability is essential for appropriate cellular growth, and mTORC1 is a major regulator of this process. Mechanisms causing mTORC1 activation are, however, complex and diverse. We report here an additional important step in the activation of mTORC1, which regulates the efflux of amino acids from lysosomes into the cytoplasm. This process requires DRAM-1, which binds the membrane carrier protein SCAMP3 and the amino acid transporters SLC1A5 and LAT1, directing them to lysosomes and permitting efficient mTORC1 activation. Consequently, we show that loss of DRAM-1 also impacts pathways regulated by mTORC1, including insulin signaling, glycemic balance, and adipocyte differentiation. Interestingly, although DRAM-1 can promote autophagy, this effect on mTORC1 is autophagy independent, and autophagy only becomes important for mTORC1 activation when DRAM-1 is deleted. These findings provide important insights into mTORC1 activation and highlight the importance of DRAM-1 in growth control, metabolic homeostasis, and differentiation.


Assuntos
Aminoácidos/metabolismo , Proteína 7 Relacionada à Autofagia/metabolismo , Metabolismo Energético , Lisossomos/enzimologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Membrana/metabolismo , Células 3T3-L1 , Adipócitos/enzimologia , Adipogenia , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Sistema y+L de Transporte de Aminoácidos/genética , Sistema y+L de Transporte de Aminoácidos/metabolismo , Animais , Proteína 7 Relacionada à Autofagia/genética , Glicemia/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Ativação Enzimática , Células HEK293 , Células HeLa , Humanos , Insulina/sangue , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Transporte Proteico
14.
Mol Cell ; 73(3): 446-457.e6, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30612880

RESUMO

Multisite phosphorylation of kinases can induce on-off or graded regulation of catalytic activity; however, its influence on substrate specificity remains unclear. Here, we show that multisite phosphorylation of ribosomal protein S6 kinase 1 (S6K1) alters target selection. Agonist-inducible phosphorylation of glutamyl-prolyl tRNA synthetase (EPRS) by S6K1 in monocytes and adipocytes requires not only canonical phosphorylation at Thr389 by mTORC1 but also phosphorylation at Ser424 and Ser429 in the C terminus by cyclin-dependent kinase 5 (Cdk5). S6K1 phosphorylation at these additional sites induces a conformational switch and is essential for high-affinity binding and phosphorylation of EPRS, but not canonical S6K1 targets, e.g., ribosomal protein S6. Unbiased proteomic analysis identified additional targets phosphorylated by multisite phosphorylated S6K1 in insulin-stimulated adipocytes-namely, coenzyme A synthase, lipocalin 2, and cortactin. Thus, embedded within S6K1 is a target-selective kinase phospho-code that integrates signals from mTORC1 and Cdk5 to direct an insulin-stimulated, post-translational metabolon determining adipocyte lipid metabolism.


Assuntos
Adipócitos/enzimologia , Metabolismo dos Lipídeos , Células Mieloides/enzimologia , Processamento de Proteína Pós-Traducional , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Aminoacil-tRNA Sintetases/metabolismo , Animais , Quinase 5 Dependente de Ciclina/metabolismo , Ativação Enzimática , Células HEK293 , Células Hep G2 , Humanos , Insulina/farmacologia , Interferon gama/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Células Mieloides/efeitos dos fármacos , Fosforilação , Proteômica/métodos , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Transdução de Sinais , Especificidade por Substrato , Células U937
15.
Mol Cell ; 75(4): 807-822.e8, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31442424

RESUMO

mTORC2 controls glucose and lipid metabolism, but the mechanisms are unclear. Here, we show that conditionally deleting the essential mTORC2 subunit Rictor in murine brown adipocytes inhibits de novo lipid synthesis, promotes lipid catabolism and thermogenesis, and protects against diet-induced obesity and hepatic steatosis. AKT kinases are the canonical mTORC2 substrates; however, deleting Rictor in brown adipocytes appears to drive lipid catabolism by promoting FoxO1 deacetylation independently of AKT, and in a pathway distinct from its positive role in anabolic lipid synthesis. This facilitates FoxO1 nuclear retention, enhances lipid uptake and lipolysis, and potentiates UCP1 expression. We provide evidence that SIRT6 is the FoxO1 deacetylase suppressed by mTORC2 and show an endogenous interaction between SIRT6 and mTORC2 in both mouse and human cells. Our findings suggest a new paradigm of mTORC2 function filling an important gap in our understanding of this more mysterious mTOR complex.


Assuntos
Adipócitos Marrons/metabolismo , Proteína Forkhead Box O1/metabolismo , Lipólise , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Sirtuínas/metabolismo , Adipócitos Marrons/citologia , Animais , Proteína Forkhead Box O1/genética , Células HEK293 , Células HeLa , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Camundongos Transgênicos , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Sirtuínas/genética
16.
Proc Natl Acad Sci U S A ; 121(24): e2319301121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38838011

RESUMO

Alcohol dehydrogenase 1B (ADH1B) is a primate-specific enzyme which, uniquely among the ADH class 1 family, is highly expressed both in adipose tissue and liver. Its expression in adipose tissue is reduced in obesity and increased by insulin stimulation. Interference with ADH1B expression has also been reported to impair adipocyte function. To better understand the role of ADH1B in adipocytes, we used CRISPR/Cas9 to delete ADH1B in human adipose stem cells (ASC). Cells lacking ADH1B failed to differentiate into mature adipocytes manifested by minimal triglyceride accumulation and a marked reduction in expression of established adipocyte markers. As ADH1B is capable of converting retinol to retinoic acid (RA), we conducted rescue experiments. Incubation of ADH1B-deficient preadipocytes with 9-cis-RA, but not with all-transretinol, significantly rescued their ability to accumulate lipids and express markers of adipocyte differentiation. A homozygous missense variant in ADH1B (p.Arg313Cys) was found in a patient with congenital lipodystrophy of unknown cause. This variant significantly impaired the protein's dimerization, enzymatic activity, and its ability to rescue differentiation in ADH1B-deficient ASC. The allele frequency of this variant in the Middle Eastern population suggests that it is unlikely to be a fully penetrant cause of severe lipodystrophy. In conclusion, ADH1B appears to play an unexpected, crucial and cell-autonomous role in human adipocyte differentiation by serving as a necessary source of endogenous retinoic acid.


Assuntos
Adipócitos , Adipogenia , Álcool Desidrogenase , Humanos , Álcool Desidrogenase/metabolismo , Álcool Desidrogenase/genética , Adipogenia/genética , Adipócitos/metabolismo , Adipócitos/citologia , Tretinoína/metabolismo , Diferenciação Celular , Sistemas CRISPR-Cas , Mutação de Sentido Incorreto , Tecido Adiposo/metabolismo
17.
Annu Rev Physiol ; 85: 339-362, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36137277

RESUMO

High iron is a risk factor for type 2 diabetes mellitus (T2DM) and affects most of its cardinal features: decreased insulin secretion, insulin resistance, and increased hepatic gluconeogenesis. This is true across the normal range of tissue iron levels and in pathologic iron overload. Because of iron's central role in metabolic processes (e.g., fuel oxidation) and metabolic regulation (e.g., hypoxia sensing), iron levels participate in determining metabolic rates, gluconeogenesis, fuel choice, insulin action, and adipocyte phenotype. The risk of diabetes related to iron is evident in most or all tissues that determine diabetes phenotypes, with the adipocyte, beta cell, and liver playing central roles. Molecular mechanisms for these effects are diverse, although there may be integrative pathways at play. Elucidating these pathways has implications not only for diabetes prevention and treatment, but also for the pathogenesis of other diseases that are, like T2DM, associated with aging, nutrition, and iron.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Sobrecarga de Ferro , Humanos , Ferro/metabolismo , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/metabolismo , Fígado/metabolismo , Resistência à Insulina/fisiologia
18.
Genes Dev ; 33(23-24): 1657-1672, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31727774

RESUMO

In obesity, adipose tissue undergoes dynamic remodeling processes such as adipocyte hypertrophy, hypoxia, immune responses, and adipocyte death. However, whether and how invariant natural killer T (iNKT) cells contribute to adipose tissue remodeling are elusive. In this study, we demonstrate that iNKT cells remove unhealthy adipocytes and stimulate the differentiation of healthy adipocytes. In obese adipose tissue, iNKT cells were abundantly found nearby dead adipocytes. FasL-positive adipose iNKT cells exerted cytotoxic effects to eliminate hypertrophic and pro-inflammatory Fas-positive adipocytes. Furthermore, in vivo adipocyte-lineage tracing mice model showed that activation of iNKT cells by alpha-galactosylceramide promoted adipocyte turnover, eventually leading to potentiation of the insulin-dependent glucose uptake ability in adipose tissue. Collectively, our data propose a novel role of adipose iNKT cells in the regulation of adipocyte turnover in obesity.


Assuntos
Adipócitos/citologia , Tecido Adiposo/citologia , Tecido Adiposo/imunologia , Morte Celular/fisiologia , Ativação Linfocitária/fisiologia , Células T Matadoras Naturais/fisiologia , Obesidade/fisiopatologia , Células 3T3 , Adipócitos/imunologia , Adipócitos/metabolismo , Animais , Proliferação de Células , Proteína Ligante Fas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptor fas/metabolismo
19.
Genes Dev ; 33(19-20): 1367-1380, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31488578

RESUMO

Fat storage in adult mammals is a highly regulated process that involves the mobilization of adipocyte progenitor cells (APCs) that differentiate to produce new adipocytes. Here we report a role for the broadly conserved miR-26 family of microRNAs (miR-26a-1, miR-26a-2, and miR-26b) as major regulators of APC differentiation and adipose tissue mass. Deletion of all miR-26-encoding loci in mice resulted in a dramatic expansion of adipose tissue in adult animals fed normal chow. Conversely, transgenic overexpression of miR-26a protected mice from high-fat diet-induced obesity. These effects were attributable to a cell-autonomous function of miR-26 as a potent inhibitor of APC differentiation. miR-26 blocks adipogenesis, at least in part, by repressing expression of Fbxl19, a conserved miR-26 target without a previously known role in adipocyte biology that encodes a component of SCF-type E3 ubiquitin ligase complexes. These findings have therefore revealed a novel pathway that plays a critical role in regulating adipose tissue formation in vivo and suggest new potential therapeutic targets for obesity and related disorders.


Assuntos
Adipogenia/genética , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , MicroRNAs/metabolismo , Obesidade/genética , Células-Tronco/citologia , Animais , Dieta Hiperlipídica , Expressão Gênica , Técnicas de Silenciamento de Genes , Camundongos , MicroRNAs/genética
20.
Mol Cell ; 69(5): 757-772.e7, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29499132

RESUMO

As most of the mitochondrial proteome is encoded in the nucleus, mitochondrial functions critically depend on nuclear gene expression and bidirectional mito-nuclear communication. However, mitochondria-to-nucleus communication pathways in mammals are incompletely understood. Here, we identify G-Protein Pathway Suppressor 2 (GPS2) as a mediator of mitochondrial retrograde signaling and a transcriptional activator of nuclear-encoded mitochondrial genes. GPS2-regulated translocation from mitochondria to nucleus is essential for the transcriptional activation of a nuclear stress response to mitochondrial depolarization and for supporting basal mitochondrial biogenesis in differentiating adipocytes and brown adipose tissue (BAT) from mice. In the nucleus, GPS2 recruitment to target gene promoters regulates histone H3K9 demethylation and RNA POL2 activation through inhibition of Ubc13-mediated ubiquitination. These findings, together, reveal an additional layer of regulation of mitochondrial gene transcription, uncover a direct mitochondria-nuclear communication pathway, and indicate that GPS2 retrograde signaling is a key component of the mitochondrial stress response in mammals.


Assuntos
Núcleo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/metabolismo , Biogênese de Organelas , Transdução de Sinais/fisiologia , Células 3T3-L1 , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Núcleo Celular/genética , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Metilação , Camundongos , Mitocôndrias/genética , Regiões Promotoras Genéticas/fisiologia , Ativação Transcricional/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA