Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.630
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(8): 1325-1345.e22, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35366418

RESUMO

Protein aggregation is a hallmark of multiple human pathologies. Autophagy selectively degrades protein aggregates via aggrephagy. How selectivity is achieved has been elusive. Here, we identify the chaperonin subunit CCT2 as an autophagy receptor regulating the clearance of aggregation-prone proteins in the cell and the mouse brain. CCT2 associates with aggregation-prone proteins independent of cargo ubiquitination and interacts with autophagosome marker ATG8s through a non-classical VLIR motif. In addition, CCT2 regulates aggrephagy independently of the ubiquitin-binding receptors (P62, NBR1, and TAX1BP1) or chaperone-mediated autophagy. Unlike P62, NBR1, and TAX1BP1, which facilitate the clearance of protein condensates with liquidity, CCT2 specifically promotes the autophagic degradation of protein aggregates with little liquidity (solid aggregates). Furthermore, aggregation-prone protein accumulation induces the functional switch of CCT2 from a chaperone subunit to an autophagy receptor by promoting CCT2 monomer formation, which exposes the VLIR to ATG8s interaction and, therefore, enables the autophagic function.


Assuntos
Chaperonina com TCP-1 , Macroautofagia , Agregados Proteicos , Animais , Camundongos , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/fisiologia , Proteínas de Transporte/metabolismo , Chaperonina com TCP-1/metabolismo , Proteína Sequestossoma-1/metabolismo
2.
EMBO J ; 42(7): e112309, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36704946

RESUMO

Hundreds of nucleus-encoded mitochondrial precursor proteins are synthesized in the cytosol and imported into mitochondria in a post-translational manner. However, the early processes associated with mitochondrial protein targeting remain poorly understood. Here, we show that in Saccharomyces cerevisiae, the cytosol has the capacity to transiently store mitochondrial matrix-destined precursors in dedicated deposits that we termed MitoStores. Competitive inhibition of mitochondrial protein import via clogging of import sites greatly enhances the formation of MitoStores, but they also form during physiological cell growth on nonfermentable carbon sources. MitoStores are enriched for a specific subset of nucleus-encoded mitochondrial proteins, in particular those containing N-terminal mitochondrial targeting sequences. Our results suggest that MitoStore formation suppresses the toxic potential of aberrantly accumulating mitochondrial precursor proteins and is controlled by the heat shock proteins Hsp42 and Hsp104. Thus, the cytosolic protein quality control system plays an active role during the early stages of mitochondrial protein targeting through the coordinated and localized sequestration of mitochondrial precursor proteins.


Assuntos
Chaperonas Moleculares , Proteínas de Saccharomyces cerevisiae , Citosol/metabolismo , Chaperonas Moleculares/metabolismo , Mitocôndrias/metabolismo , Proteínas de Choque Térmico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Mol Cell ; 75(3): 442-456.e4, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31176671

RESUMO

Insulin gene coding sequence mutations are known to cause mutant INS-gene-induced diabetes of youth (MIDY), yet the cellular pathways needed to prevent misfolded proinsulin accumulation remain incompletely understood. Here, we report that Akita mutant proinsulin forms detergent-insoluble aggregates that entrap wild-type (WT) proinsulin in the endoplasmic reticulum (ER), thereby blocking insulin production. Two distinct quality-control mechanisms operate together to combat this insult: the ER luminal chaperone Grp170 prevents proinsulin aggregation, while the ER membrane morphogenic protein reticulon-3 (RTN3) disposes of aggregates via ER-coupled autophagy (ER-phagy). We show that enhanced RTN-dependent clearance of aggregated Akita proinsulin helps to restore ER export of WT proinsulin, which can promote WT insulin production, potentially alleviating MIDY. We also find that RTN3 participates in the clearance of other mutant prohormone aggregates. Together, these results identify a series of substrates of RTN3-mediated ER-phagy, highlighting RTN3 in the disposal of pathogenic prohormone aggregates.


Assuntos
Proteínas de Transporte/genética , Diabetes Mellitus/genética , Proteínas de Choque Térmico HSP70/genética , Insulina/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Proinsulina/genética , Autofagia/genética , Diabetes Mellitus/patologia , Retículo Endoplasmático/genética , Células HEK293 , Humanos , Insulina/biossíntese , Mutação/genética , Proinsulina/biossíntese , Agregados Proteicos/genética , Dobramento de Proteína , RNA Interferente Pequeno/genética
4.
Mol Cell ; 73(1): 143-156.e4, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30472191

RESUMO

Cell dormancy is a widespread mechanism used by bacteria to evade environmental threats, including antibiotics. Here we monitored bacterial antibiotic tolerance and regrowth at the single-cell level and found that each individual survival cell shows different "dormancy depth," which in return regulates the lag time for cell resuscitation after removal of antibiotic. We further established that protein aggresome-a collection of endogenous protein aggregates-is an important indicator of bacterial dormancy depth, whose formation is promoted by decreased cellular ATP level. For cells to leave the dormant state and resuscitate, clearance of protein aggresome and recovery of proteostasis are required. We revealed that the ability to recruit functional DnaK-ClpB machineries, which facilitate protein disaggregation in an ATP-dependent manner, determines the lag time for bacterial regrowth. Better understanding of the key factors regulating bacterial regrowth after surviving antibiotic attack could lead to new therapeutic strategies for combating bacterial antibiotic tolerance.


Assuntos
Trifosfato de Adenosina/metabolismo , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Metabolismo Energético/efeitos dos fármacos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Agregados Proteicos , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Concentração de Íons de Hidrogênio , Viabilidade Microbiana/efeitos dos fármacos , Análise de Célula Única , Fatores de Tempo
5.
Semin Cell Dev Biol ; 156: 107-120, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-37734998

RESUMO

The ubiquitin proteasome system maintains protein homeostasis by regulating the breakdown of misfolded proteins, thereby preventing misfolded protein aggregates. The efficient elimination is vital for preventing damage to the cell by misfolded proteins, known as proteotoxic stress. Proteotoxic stress can lead to the collapse of protein homeostasis and can alter the function of the ubiquitin proteasome system. Conversely, impairment of the ubiquitin proteasome system can also cause proteotoxic stress and disrupt protein homeostasis. This review examines two impacts of proteotoxic stress, 1) disruptions to ubiquitin homeostasis (ubiquitin stress) and 2) disruptions to proteasome homeostasis (proteasome stress). Here, we provide a mechanistic description of the relationship between proteotoxic stress and the ubiquitin proteasome system. This relationship is illustrated by findings from several protein misfolding diseases, mainly neurodegenerative diseases, as well as from basic biology discoveries from yeast to mammals. In addition, we explore the importance of the ubiquitin proteasome system in endoplasmic reticulum quality control, and how proteotoxic stress at this organelle is alleviated. Finally, we highlight how cells utilize the ubiquitin proteasome system to adapt to proteotoxic stress and how the ubiquitin proteasome system can be genetically and pharmacologically manipulated to maintain protein homeostasis.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Animais , Ubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Estresse Proteotóxico , Proteínas/metabolismo , Mamíferos/metabolismo
6.
J Cell Sci ; 137(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38757366

RESUMO

Nesprin proteins, which are components of the linker of nucleoskeleton and cytoskeleton (LINC) complex, are located within the nuclear envelope and play prominent roles in nuclear architecture. For example, LINC complex proteins interact with both chromatin and the cytoskeleton. Here, we report that the Drosophila Nesprin MSP300 has an additional function in autophagy within larval body wall muscles. RNAi-mediated MSP300 knockdown in larval body wall muscles resulted in defects in the contractile apparatus, muscle degeneration and defective autophagy. In particular, MSP300 knockdown caused accumulation of cytoplasmic aggregates that contained poly-ubiquitylated cargo, as well as the autophagy receptor ref(2)P (the fly homolog of p62 or SQSTM) and Atg8a. Furthermore, MSP300 knockdown larvae expressing an mCherry-GFP-tagged Atg8a transgene exhibited aberrant persistence of the GFP signal within these aggregates, indicating failure of autophagosome maturation. These autophagy deficits were similar to those exhibited by loss of the endoplasmic reticulum (ER) fusion protein Atlastin (Atl), raising the possibility that Atl and MSP300 might function in the same pathway. In support of this possibility, we found that a GFP-tagged MSP300 protein trap exhibited extensive localization to the ER. Alteration of ER-directed MSP300 might abrogate important cytoskeletal contacts necessary for autophagosome completion.


Assuntos
Autofagia , Proteínas de Drosophila , Proteostase , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Retículo Endoplasmático/metabolismo , Músculos/metabolismo , Larva/metabolismo , Larva/genética , Proteínas dos Microfilamentos , Proteínas Musculares
7.
Trends Immunol ; 44(4): 266-275, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36868982

RESUMO

The emphasis on mechanisms driving multiple sclerosis (MS) symptomatic worsening suggests that we move beyond categorical clinical classifiers such as relapsing-remitting MS (RR-MS) and progressive MS (P-MS). Here, we focus on the clinical phenomenon progression independent of relapse activity (PIRA), which begins early in the disease course. PIRA occurs throughout MS, becoming more phenotypically evident as patients age. The underlying mechanisms for PIRA include chronic-active demyelinating lesions (CALs), subpial cortical demyelination, and nerve fiber injury following demyelination. We propose that much of the tissue injury associated with PIRA is driven by autonomous meningeal lymphoid aggregates, present before disease onset and unresponsive to current therapeutics. Recently, specialized magnetic resonance imaging (MRI) has identified and characterized CALs as paramagnetic rim lesions in humans, enabling novel radiographic-biomarker-clinical correlations to further understand and treat PIRA.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla/complicações , Meninges/patologia , Progressão da Doença , Esclerose Múltipla Recidivante-Remitente/complicações , Esclerose Múltipla Recidivante-Remitente/patologia
8.
Proc Natl Acad Sci U S A ; 120(30): e2304737120, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459540

RESUMO

We propose a time-frequency resolved spectroscopic technique which employs nonlinear interferometers to study exciton-exciton scattering in molecular aggregates. A higher degree of control over the contributing Liouville pathways is obtained as compared to classical light. We show how the nonlinear response can be isolated from the orders-of-magnitude stronger linear background by either phase matching or polarization filtering. Both arise due to averaging the signal over a large number of noninteracting, randomly oriented molecules. We apply our technique to the Frenkel exciton model which excludes charge separation for the photosystem II reaction center. We show how the sum of the entangled photon frequencies can be used to select two-exciton resonances, while their delay times reveal the single-exciton levels involved in the optical process.

9.
Hum Mol Genet ; 32(24): 3303-3311, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37642359

RESUMO

This year is a milestone anniversary of the discovery that Huntington's disease is caused by the presence of expanded polyglutamine repeats in the huntingtin gene leading to the formation of huntingtin aggregates. 30 years have elapsed and there is still no cure and the only FDA-approved treatment to alleviate the debilitating locomotor impairments presents several adverse effects. It has long been neglected that the huntingtin gene is almost ubiquitously expressed in many tissues outside of the nervous system. Growing evidence indicates that these peripheral tissues can contribute to the symptoms of the disease. New findings in Drosophila have shown that the selective expression of mutant huntingtin in muscle or fat is sufficient to cause detrimental effects in the absence of any neurodegeneration. In addition, it was discovered that a completely different tissue distribution of Htt aggregates in Drosophila muscles is responsible for a drastic aggravation of the detrimental effects. This review examines the peripheral tissues that express huntingtin with an added focus on the nature and distribution of the aggregates, if any.


Assuntos
Doença de Huntington , Proteínas Nucleares , Animais , Proteínas Nucleares/genética , Proteínas do Tecido Nervoso/genética , Peptídeos/genética , Peptídeos/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Proteína Huntingtina/genética , Drosophila/metabolismo
10.
EMBO J ; 40(19): e107260, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34410010

RESUMO

The cellular protein quality control machinery is important for preventing protein misfolding and aggregation. Declining protein homeostasis (proteostasis) is believed to play a crucial role in age-related neurodegenerative disorders. However, how neuronal proteostasis capacity changes in different diseases is not yet sufficiently understood, and progress in this area has been hampered by the lack of tools to monitor proteostasis in mammalian models. Here, we have developed reporter mice for in vivo analysis of neuronal proteostasis. The mice express EGFP-fused firefly luciferase (Fluc-EGFP), a conformationally unstable protein that requires chaperones for proper folding, and that reacts to proteotoxic stress by formation of intracellular Fluc-EGFP foci and by reduced luciferase activity. Using these mice, we provide evidence for proteostasis decline in the aging brain. Moreover, we find a marked reaction of the Fluc-EGFP sensor in a mouse model of tauopathy, but not in mouse models of Huntington's disease. Mechanistic investigations in primary neuronal cultures demonstrate that different types of protein aggregates have distinct effects on the cellular protein quality control. Thus, Fluc-EGFP reporter mice enable new insights into proteostasis alterations in different diseases.


Assuntos
Envelhecimento/metabolismo , Suscetibilidade a Doenças , Genes Reporter , Camundongos Transgênicos , Neurônios/metabolismo , Proteostase , Envelhecimento/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Expressão Gênica , Hipocampo/metabolismo , Hipocampo/patologia , Doença de Huntington/etiologia , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Camundongos , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Agregados Proteicos , Agregação Patológica de Proteínas , Dobramento de Proteína , Deficiências na Proteostase/etiologia , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/patologia , Tauopatias/etiologia , Tauopatias/metabolismo , Tauopatias/patologia
11.
Development ; 149(20)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36161475

RESUMO

Mechanical constraints have a high impact on development processes, and there is a need for new tools to investigate the role of mechanosensitive pathways in tissue reorganization during development. We present here experiments in which embryonic cell aggregates are aspired through constrictions in microfluidic channels, generating highly heterogeneous flows and large cell deformations that can be imaged using two-photon microscopy. This approach provides a way to measure in situ local viscoelastic properties of 3D tissues and connect them to intracellular and intercellular events, such as cell shape changes and cell rearrangements. These methods could be applied to organoids to investigate and quantify rheological properties of tissues, and to understand how constraints affect development.


Assuntos
Microfluídica , Microfluídica/métodos , Reologia , Forma Celular
12.
FASEB J ; 38(3): e23461, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38317639

RESUMO

Amyotrophic lateral sclerosis is a fatal neurodegenerative disorder characterized by progressive skeletal muscle denervation and loss of motor neurons that results in muscle atrophy and eventual death due to respiratory failure. Previously, we identified a novel SOD1L84F variation in a familial ALS case. In this study, we examined the functional consequences of SOD1L84F overexpression in the mouse motor neuron cell line (NSC-34). The cells expressing SOD1L84F showed increased oxidative stress and increased cell death. Interestingly, SOD1L84F destabilized the native dimer and formed high molecular weight SDS-resistant protein aggregates. Furthermore, SOD1L84F also decreased the percentage of differentiated cells and significantly reduced neurite length. A plethora of evidence suggested active involvement of skeletal muscle in disease initiation and progression. We observed differential processing of the mutant SOD1 and perturbations of cellular machinery in NSC-34 and muscle cell line C2C12. Unlike neuronal cells, mutant protein failed to accumulate in muscle cells probably due to the activated autophagy, as evidenced by increased LC3-II and reduced p62. Further, SOD1L84F altered mitochondrial dynamics only in NSC-34. In addition, microarray analysis also revealed huge variations in differentially expressed genes between NSC-34 and C2C12. Interestingly, SOD1L84F hampered the endogenous FUS autoregulatory mechanism in NSC-34 by downregulating retention of introns 6 and 7 resulting in a two-fold upregulation of FUS. No such changes were observed in C2C12. Our findings strongly suggest the differential processing and response towards the mutant SOD1 in neuronal and muscle cell lines.


Assuntos
Esclerose Lateral Amiotrófica , Superóxido Dismutase-1 , Animais , Camundongos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Células Musculares/metabolismo , Mutação , Superóxido Dismutase-1/genética
13.
Nano Lett ; 24(6): 1874-1881, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38295760

RESUMO

Traditional single-nanoparticle sizing using optical microscopy techniques assesses size via the diffusion constant, which requires suspended particles to be in a medium of known viscosity. However, these assumptions are typically not fulfilled in complex natural sample environments. Here, we introduce dual-angle interferometric scattering microscopy (DAISY), enabling optical quantification of both size and polarizability of individual nanoparticles (radius <170 nm) without requiring a priori information regarding the surrounding media or super-resolution imaging. DAISY achieves this by combining the information contained in concurrently measured forward and backward scattering images through twilight off-axis holography and interferometric scattering (iSCAT). Going beyond particle size and polarizability, single-particle morphology can be deduced from the fact that the hydrodynamic radius relates to the outer particle radius, while the scattering-based size estimate depends on the internal mass distribution of the particles. We demonstrate this by differentiating biomolecular fractal aggregates from spherical particles in fetal bovine serum at the single-particle level.

14.
Nano Lett ; 24(27): 8287-8295, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38941514

RESUMO

Organic dyes with simultaneously boosted near-infrared-II (NIR-II) fluorescence, type I photodynamic therapy (PDT), and photothermal therapy (PTT) in the aggregate state are still elusive due to the unclear structure-function relationship. Herein, electron-withdrawing substituents are introduced at the 5-indolyl positions of BODIPY dyes to form tight J-aggregates for enhanced NIR-II fluorescence and type I PDT/PTT. The introduction of an electron-rich julolidine group at the meso position and an electron-withdrawing substituent (-F) at the indolyl moiety can enhance intermolecular charge transfer and the hydrogen bonding effect, contributing to the efficient generation of superoxide radicals in the aggregate state. The nanoparticles of BDP-F exhibit NIR-II fluorescence at 1000 nm, good superoxide radical generation ability, and a high photothermal conversion efficiency (50.9%), which enabled NIR-II fluorescence-guided vasculature/tumor imaging and additive PDT/PTT. This work provides a strategy for constructing phototheranostic agents with enhanced NIR-II fluorescence and type I PDT/PTT for broad biomedical applications.


Assuntos
Compostos de Boro , Corantes Fluorescentes , Fotoquimioterapia , Compostos de Boro/química , Compostos de Boro/uso terapêutico , Humanos , Corantes Fluorescentes/química , Animais , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Linhagem Celular Tumoral , Imagem Óptica/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Terapia Fototérmica , Elétrons , Raios Infravermelhos , Fluorescência
15.
J Biol Chem ; 299(8): 105019, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422193

RESUMO

Poly(A)-binding protein nuclear 1 (PABPN1) is an RNA-binding protein localized in nuclear speckles, while its alanine (Ala)-expanded variants accumulate as intranuclear aggregates in oculopharyngeal muscular dystrophy. The factors that drive PABPN1 aggregation and its cellular consequences remain largely unknown. Here, we investigated the roles of Ala stretch and poly(A) RNA in the phase transition of PABPN1 using biochemical and molecular cell biology methods. We have revealed that the Ala stretch controls its mobility in nuclear speckles, and Ala expansion leads to aggregation from the dynamic speckles. Poly(A) nucleotide is essential to the early-stage condensation that thereby facilitates speckle formation and transition to solid-like aggregates. Moreover, the PABPN1 aggregates can sequester CFIm25, a component of the pre-mRNA 3'-UTR processing complex, in an mRNA-dependent manner and consequently impair the function of CFIm25 in alternative polyadenylation. In conclusion, our study elucidates a molecular mechanism underlying PABPN1 aggregation and sequestration, which will be beneficial for understanding PABPN1 proteinopathy.


Assuntos
Distrofia Muscular Oculofaríngea , Poliadenilação , Humanos , Alanina/metabolismo , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/metabolismo , Proteína I de Ligação a Poli(A)/genética , Proteína I de Ligação a Poli(A)/metabolismo , RNA/metabolismo
16.
Plant J ; 116(2): 329-346, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37675599

RESUMO

Seed protein localization in seed storage protein bodies (SSPB) and their significance in germination are well recognized. SSPB are spherical and contain an assembly of water-soluble and salt-soluble proteins. Although the native structures of some SSPB proteins are explored, their structural arrangement to the functional correlation in SSPB remains unknown. SSPB are morphologically analogous to electron-dense amyloid-containing structures reported in other organisms. Here, we show that wheat, mungbean, barley, and chickpea SSPB exhibit a speckled pattern of amyloids interspersed in an amyloid-like matrix along with native structures, suggesting the composite nature of SSPB. This is confirmed by multispectral imaging methods, electron microscopy, infrared, and X-ray diffraction analysis, using in situ tissue sections, ex vivo protoplasts, and in vitro SSPB. Laser capture microdissection coupled with peptide fingerprinting has shown that globulin 1 and 3 in wheat, and 8S globulin and conglycinin in mungbean are the major amyloidogenic proteins. The amyloid composites undergo a sustained degradation during germination and seedling growth, facilitated by an intricate interplay of plant hormones and proteases. These results would lay down the foundation for understanding the amyloid composite structure during SSPB biogenesis and its evolution across the plant kingdom and have implications in both basic and applied plant biology.

17.
Small ; : e2400260, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860737

RESUMO

Harnessing the developmental events of mesenchymal condensation to direct postnatal dental stem cell aggregation represents a cutting-edge and promising approach to tooth regeneration. Tooth avulsion is among the most prevalent and serious dental injuries, and odontogenic aggregates assembled by stem cells from human exfoliated deciduous teeth (SHED) have proven effective in revitalizing avulsed teeth after replantation in the clinical trial. However, whether and how SHED aggregates (SA) communicate with recipient components and promote synergistic tissue regeneration to support replanted teeth remains elusive. Here, it is shown that SA-mediated avulsed tooth regeneration involves periodontal restoration and recovery of recipient Gli1+ stem cells, which are mobilized and necessarily contribute to the reestablishment of the tooth-periodontal ligament-bone interface. Mechanistically, the release of extracellular vesicles (EVs) is revealed indispensable for the implanted SA to mobilize recipient Gli1+ cells and regenerate avulsed teeth. Furthermore, SHED aggregates-released EVs (SA-EVs) are featured with odontogenic properties linked to tissue regeneration, which enhance migration, proliferation, and differentiation of Gli1+ cells. Importantly, local application of SA-EVs per se empowers recipient Gli1+ cells and safeguards regeneration of avulsed teeth. Collectively, the findings establish a paradigm in which odontogenesis-featured EVs govern donor-recipient stem cell interplay to achieve tooth regeneration, inspiring cell-free translational regenerative strategies.

18.
Small ; 20(26): e2306707, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38247201

RESUMO

In living organisms, carotenoids are incorporated in biomembranes, remarkably modulating their mechanical characteristics, fluidity, and permeability. Significant resonance enhancement of Raman optical activity (ROA) signals of carotenoid chiral aggregates makes resonance ROA (RROA), a highly selective tool to study exclusively carotenoid assemblies in model membranes. Hence, RROA is combined with electronic circular dichroism (ECD), dynamic light scattering (DLS), molecular dynamics, and quantum-chemical calculations to shed new light on the carotenoid aggregation in dipalmitoylphosphatidylcholine (DPPC) liposomes. Using representative members of the carotenoid family: apolar α-carotene and more polar fucoxanthin and zeaxanthin, the authors demonstrate that the stability of carotenoid aggregates is directly linked with their orientation in membranes and the monomer structures inside the assemblies. In particular, polyene chain distortion of α-carotene molecules is an important feature of J-aggregates that show increased orientational freedom and stability inside liposomes compared to H-assemblies of more polar xanthophylls. In light of these results, RROA emerges as a new tool to study active compounds and drugs embedded in membranes.


Assuntos
Carotenoides , Lipossomos , Análise Espectral Raman , Análise Espectral Raman/métodos , Carotenoides/química , Lipossomos/química , Simulação de Dinâmica Molecular , Dicroísmo Circular , 1,2-Dipalmitoilfosfatidilcolina/química , Xantofilas/química
19.
RNA ; 28(1): 67-75, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34670846

RESUMO

Ribonucleoprotein granules are ubiquitous features of eukaryotic cells. Several observations argue that the formation of at least some RNP granules can be considered analogous to the formation of unfolded protein aggregates. First, unfolded protein aggregates form from the exposure of promiscuous protein interaction surfaces, while some mRNP granules form, at least in part, by promiscuous intermolecular RNA-RNA interactions due to exposed RNA surfaces when mRNAs are not engaged with ribosomes. Second, analogous to the role of protein chaperones in preventing misfolded protein aggregation, cells contain abundant "RNA chaperones" to limit inappropriate RNA-RNA interactions and prevent mRNP granule formation. Third, analogous to the role of protein aggregates in diseases, situations where RNA aggregation exceeds the capacity of RNA chaperones to disaggregate RNAs may contribute to human disease. Understanding that RNP granules can be considered as promiscuous, reversible RNA aggregation events allow insight into their composition and how cells have evolved functions for RNP granules.


Assuntos
Condensados Biomoleculares/química , Proteínas de Choque Térmico/química , Chaperonas Moleculares/química , RNA Mensageiro/química , Ribonucleoproteínas/química , Grânulos de Estresse/química , Condensados Biomoleculares/metabolismo , Eucariotos , Células Eucarióticas/metabolismo , Fator de Iniciação 4A em Eucariotos/química , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Floculação , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Iniciação Traducional da Cadeia Peptídica , Agregados Proteicos , Dobramento de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Grânulos de Estresse/genética , Grânulos de Estresse/metabolismo
20.
Appl Environ Microbiol ; 90(7): e0071424, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38940583

RESUMO

Oligotrophic deep-water lakes are unique and sensitive ecosystems with limited nutrient availability. Understanding bacterial communities within these lakes is crucial for assessing ecosystem health, biogeochemical cycling, and responses to environmental changes. In this study, we investigated the seasonal and vertical dynamics of both free-living (FL) and particle-attached (PA) bacteria in Lake Fuxian, a typical oligotrophic deep freshwater lake in southeast China. Our findings revealed distinct seasonal and vertical dynamics of FL and PA bacterial communities, driven by similar physiochemical environmental factors. PA bacteria exhibited higher α- and ß-diversity and were enriched with Proteobacteria, Cyanobacteria, Firmicutes, Patescibacteria, Planctomycetota, and Verrucomicrobiota, while FL bacteria were enriched with Actinobacteria and Bacteroidota. FL bacteria showed enrichment in putative functions related to chemoheterotrophy and aerobic anoxygenic photosynthesis, whereas the PA fraction was enriched with intracellular parasites (mainly contributed by Rickettsiales, Chlamydiales, and Legionellales) and nitrogen metabolism functions. Deterministic processes predominantly shaped the assembly of both FL and PA bacterial communities, with stochastic processes playing a greater role in the FL fraction. Network analysis revealed extensive species interactions, with a higher proportion of positively correlated edges in the PA network, indicating mutualistic or cooperative interactions. Cyanobium, Comamonadaceae, and Roseomonas were identified as keystone taxa in the PA network, underscoring potential cooperation between autotrophic and heterotrophic bacteria in organic particle microhabitats. Overall, the disparities in bacterial diversity, community composition, putative function, and network characteristics between FL and PA fractions highlight their adaptation to distinct ecological niches within these unique lake ecosystems.IMPORTANCEUnderstanding the diversity of microbial communities, their assembly mechanisms, and their responses to environmental changes is fundamental to the study of aquatic microbial ecology. Oligotrophic deep-water lakes are fragile ecosystems with limited nutrient resources, rendering them highly susceptible to environmental fluctuations. Examining different bacterial types within these lakes offers valuable insights into the intricate mechanisms governing community dynamics and adaptation strategies across various scales. In our investigation of oligotrophic deep freshwater Lake Fuxian in China, we explored the seasonal and vertical dynamics of two bacterial types: free-living (FL) and particle-attached (PA). Our findings unveiled distinct patterns in the diversity, composition, and putative functions of these bacteria, all shaped by environmental factors. Understanding these subtleties provides insight into bacterial interactions, thereby influencing the overall ecosystem functioning. Ultimately, our research illuminates the adaptation and roles of FL and PA bacteria within these unique lake environments, contributing significantly to our broader comprehension of ecosystem stability and health.


Assuntos
Bactérias , Lagos , Microbiota , Lagos/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , China , Ecossistema , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA