Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 20(4): 1990-1995, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36827644

RESUMO

Accrued evidence has indicated that epigenetic mechanisms altered by alcohol have been implicated in the progression and development of alcoholic liver disease (ALD). SIRT1 plays an important role in ALD progression and has emerged as a promising therapeutic target for treating ALD. The purpose of this study is to investigate the efficacy of [11C]WL-1 for quantitative imaging of SIRT1 in mouse models of early-stage ALD. Positron emission tomography/computerized tomography (PET/CT) imaging was carried out 60 min following the injection of [11C]WL-1 in mouse models of early-stage ALD and normal control mice. The time-activity curves for ALD mouse livers showed remarkably decreased total uptake of [11C]WL-1 relative to that for control mouse livers. Moreover, compared with the normal control mice, decreased uptake in the cortex, hippocampus, and cerebellum was also observed in early-stage ALD mice, while the uptake of [11C]WL-1 in amygdala showed no significant changes. Western blot analysis confirmed that the protein levels of SIRT1 in the brains of early-stage ALD mice were decreased significantly when compared to the normal control mouse brains. Collectively, PET imaging with [11C]WL-1 would facilitate future clinical studies, aiming to demonstrate the roles of SIRT1 in ALD.


Assuntos
Hepatopatias Alcoólicas , Sirtuína 1 , Animais , Camundongos , Sirtuína 1/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Hepatopatias Alcoólicas/diagnóstico por imagem , Hepatopatias Alcoólicas/metabolismo , Etanol/metabolismo , Fígado/diagnóstico por imagem , Fígado/metabolismo
2.
Adv Exp Med Biol ; 1396: 191-206, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36454468

RESUMO

Fatty liver disease is characterized as nonalcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD). Fatty liver disease is one of the most common causes of chronic liver disease worldwide among adults and children. It is characterized by excessive fat accumulation in the liver cells. It has a genetically heterogenous background with complex pathogenesis and progressions and is accompanied by significant morbidity, mortality, and healthcare costs. NAFLD's risk factors include metabolic syndrome, abdominal obesity, type 2 diabetes, and atherogenic dyslipidemia. ALD is associated with the excessive consumption of alcohol. Here, we describe the functions of various proteins encoded by gene variants contributing to the pathogenesis of nonalcoholic fatty liver disease and alcoholic fatty liver disease. Advancements in genome engineering technology have generated various in vivo and in vitro fatty liver disease models reflecting the genetic abnormalities contributing toward fatty liver disease. We will discuss currently developed different ALD and NAFLD models using the clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) genome editing tool.Furthermore, we will also discuss the salient features of CRISPR/Cas9 editing technology and Cas9 variants such as prime and base editors to replicate genetic topographies linked specifically to ALD and NAFLD. The advantages and limitations of currently available genome delivery methods necessary for optimal gene editing will also be discussed in this review. This review will provide the essential guidance for appropriate genome editing tool selection and proper gene delivery approaches for the effective development of ALD and NAFLD models, leading to the development of clinical therapeutics for fatty liver disease.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatias Alcoólicas , Hepatopatia Gordurosa não Alcoólica , Adulto , Criança , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/terapia , Edição de Genes , Etanol
3.
Curr Issues Mol Biol ; 44(7): 3253-3266, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35877448

RESUMO

Alcoholic liver disease (ALD) is linked to a broad spectrum of diseases, including diabetes, hypertension, atherosclerosis, and even liver carcinoma. The ALD spectrum includes alcoholic fatty liver disease (AFLD), alcoholic hepatitis, and cirrhosis. Most recently, some reports demonstrated that the pathogenesis of ALD is strongly associated with metabolites of human microbiota. AFLD was the onset of disease among ALDs, the initial cause of which is alcohol consumption. Thus, we analyzed the significant metabolites of microbiota against AFLD via the network pharmacology concept. The metabolites from microbiota were retrieved by the gutMGene database; sequentially, AFLD targets were identified by public databases (DisGeNET, OMIM). The final targets were utilized for protein-protein interaction (PPI) networks and signaling pathway analyses. Then, we performed a molecular docking test (MDT) to verify the affinity between metabolite(s) and target(s) utilizing the Autodock 1.5.6 tool. From a holistic viewpoint, we integrated the relationships of microbiota-signaling pathways-targets-metabolites (MSTM) using the R Package. We identified the uppermost six key targets (TLR4, RELA, IL6, PPARG, COX-2, and CYP1A2) against AFLD. The PPI network analysis revealed that TLR4, RELA, IL6, PPARG, and COX-2 had equivalent degrees of value (4); however, CYP1A2 had no associations with the other targets. The bubble chart showed that the PI3K-Akt signaling pathway in nine signaling pathways might be the most significant mechanism with antagonistic functions in the treatment of AFLD. The MDT confirmed that Icaritin is a promising agent to bind stably to RELA (known as NF-Κb). In parallel, Bacterium MRG-PMF-1, the PI3K-Akt signaling pathway, RELA, and Icaritin were the most significant components against AFLD in MSTM networks. In conclusion, we showed that the Icaritin-RELA complex on the PI3K-Akt signaling pathway by bacterial MRG-PMF-1 might have promising therapeutic effects against AFLD, providing crucial evidence for further research.

4.
Dig Dis Sci ; 65(3): 897-905, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32020359

RESUMO

Chronic liver disease is a major cause of morbidity and mortality worldwide. Even though effective treatments are now available for most chronic viral hepatitis, treatment options for other causes of chronic liver disease remain inadequate. Recent research has revealed a previously unappreciated role that the human intestinal microbiome plays in mediating the development and progression of chronic liver diseases. The recent remarkable success of fecal microbiota transplantation (FMT) in treating Clostridioides difficile demonstrates that the intestinal microbiota can be manipulated to obtain favorable therapeutic benefits and that FMT may become an important component of a total therapeutic approach to effectively treat hepatic disorders.


Assuntos
Transplante de Microbiota Fecal/tendências , Microbioma Gastrointestinal/fisiologia , Hepatopatias/microbiologia , Hepatopatias/terapia , Doença Crônica , Transplante de Microbiota Fecal/métodos , Previsões , Humanos , Hepatopatias/patologia
5.
J Cell Biochem ; 120(3): 4248-4254, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30294942

RESUMO

BACKGROUND: Alcoholic liver disease (ALD) is one of the major cause of morbidity and mortality of clinical liver disease worldwide. Until today, although many general therapies are carried out and several molecular targets have been proposed to act as the potential therapeutic targets, more accurate molecular targets and more effective therapeutic methods remain needed. MATERIAL AND METHODS: In the study, we analyze the differential expression genes (DEGs) between the patients with ALD and healthy controls. Gene Ontology enrichment and KEGG signaling pathway analysis are performed to identify the function of DEGs. Some significant molecules are proposed to act as the potential therapeutic targets for ALD. RNA data of 15 ALD tissues and 7 normal tissues for RNA expression analysis were obtained. DEGs in ALD samples compared with normal tissues identified through the limma R package and subjected to network analysis. RESULTS: As a result, we obtained a total of 274 DEGs that mainly involved in biological processes related to the angiogenesis, stress reaction, synthesis, and metabolism of organic acids. Network analysis obtained several genes with high network degree and fold change. Some significant molecules are proposed to act as the potential therapeutic targets for ALD. CONCLUSIONS: Our research identified some new progression-related genes of alcohol liver diseases, which could be regarded as the new targets for the early diagnosis and therapeutic management in ALD.


Assuntos
Biologia Computacional/métodos , Hepatopatias Alcoólicas/genética , RNA Mensageiro/genética , Transcriptoma , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Transdução de Sinais/genética
6.
J Cell Biochem ; 120(5): 7907-7917, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30426534

RESUMO

The phosphoinositide (PI) signal transduction pathway participates in liver metabolism. Abnormal activity or expression of PI-specific phospholipase C (PLC) enzymes has been described in different liver diseases. We resume the role of the PI metabolism in liver and PLC abnormalities in different liver diseases. Moreover, we present the results of PLC analyses in a normal human liver and an alcohol-damaged liver. PLC enzymes and the expression of the corresponding genes in liver biopsies from individuals deceased for complications of the alcoholic liver disease (ALD) at different stages compared with normal controls (deceased individuals with histologically normal livers without alcohol addiction anamnesis) were analyzed by using immunohistochemistry and molecular biology techniques. The expression panel of PLCs was described in normal and alcohol abuse liver. Our observations suggest that the regulation of PLC expression might be due to posttranscriptional events and that alcohol affects the epigenetic control of PLC expression belonging to PI signaling. We also describe the alternate expression of PLCB1 and PLCH1 genes in liver. Our results corroborate literature data suggesting that PLC enzymes are differently expressed in normal versus pathological liver, playing a role in the histopathogenesis of liver tissue damage. The expression and/or localization of selected PLC isoforms is especially affected in alcohol-related liver tissue histopathology. Our present observations confirm that the modulation of protein synthesis plays a role in the regulation of PLC enzymes. We also suggest that this modulation might act at the transcription level. Further studies are required to investigate related epigenetic mechanisms.

7.
J Cell Biochem ; 120(5): 7679-7688, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30417426

RESUMO

Alcoholic liver disease (ALD) encompasses a variety of liver injuries with various underlying mechanisms but still no effective treatment. So we aimed to monitor the influence of simvastatin on alcohol-induced liver injury and elucidate the underlying mechanisms of its cytoprotective effect. Thirty male albino rats were randomly divided into five equal groups. Group 1 (control): received a standard diet; group 2: received simvastatin (10 mg kg-1 day -1 ) once a day orally for 8 weeks; group 3: received 20% ethanol (7.9 g kg -1 day -1 ) daily orally for 8 weeks; group 4: received 20% ethanol along with same simvastatin dose daily for 8 weeks; group 5: received 20% ethanol orally for 8 weeks then received the same simvastatin dose for the next 8 weeks. Serum alanine aminotransferase, aspartate aminotransferase, total cholesterol, triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol were measured. Liver tissue malondialdehyde, reduced glutathione levels, and superoxide dismutase activity were estimated. B-cell lymphoma 2 and C/EBP homologous protein levels were evaluated by enzyme linked immunosorbent assay (ELISA). Light chain 3-II and peroxisome proliferation-activated receptor gamma messenger RNA expression was assessed by real-time polymerase chain reaction. Immunohistochemical staining was performed using anti-rat tumor necrosis factor-alpha antibody. Our results revealed that simvastatin treatment was able to ameliorate alcohol-induced liver damage; the improved biochemical data were confirmed by histopathological evaluation. Simvastatin being an autophagy inducer was able to prevent and reverse alcohol-induced liver changes via induction of autophagy, attenuation of oxidative stress, inflammation, and endoplasmic reticulum stress-induced apoptosis. Therefore, our findings suggest that treatment with simvastatin may be a useful approach in the management strategy of ALD.

8.
J Cell Physiol ; 234(1): 382-394, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-30076710

RESUMO

Alcoholic liver disease (ALD) is characterized by hepatocyte damage, inflammatory cell activation, and increased intestinal permeability leading to the clinical manifestations of alcoholic hepatitis. Selected members of the family of microRNAs (miRNAs) are affected by alcohol, resulting in an abnormal miRNA profile in the liver and circulation in ALD. Increasing evidence suggests that miRNAs that regulate inflammation, lipid metabolism and promote cancer are affected by excessive alcohol administration in mouse models of ALD. This communication highlights recent findings in miRNA expression and functions as they relate to the pathogenesis of ALD. The cell-specific distribution of miRNAs, as well as the significance of circulating extracellular miRNAs, is discussed as potential biomarkers. Finally, the prospects of miRNA-based therapies are evaluated in ALD.


Assuntos
Etanol/toxicidade , Hepatite Alcoólica/genética , Hepatopatias Alcoólicas/genética , MicroRNAs/genética , Animais , Hepatite Alcoólica/metabolismo , Hepatite Alcoólica/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Fígado/patologia , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Camundongos
9.
Int J Mol Sci ; 19(10)2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30309020

RESUMO

Inflammatory liver diseases in the absence of pathogens such as intoxication by xenobiotics, cholestatic liver injury, hepatic ischemia-reperfusion injury (I/R), non-alcoholic steatohepatitis (NASH), or alcoholic liver disease (ALD) remain threatening conditions demanding specific therapeutic options. Caused by various different noxae, all these conditions have been recognized to be triggered by danger- or death-associated molecular patterns (DAMPs), discompartmentalized self-structures released by dying cells. These endogenous, ectopic molecules comprise proteins, nucleic acids, adenosine triphosphate (ATP), or mitochondrial compounds, among others. This review resumes the respective modes of their release-passively by necrotic hepatocytes or actively by viable or apoptotic parenchymal cells-and their particular roles in sterile liver pathology. It addresses their sensors and the initial inflammatory responses they provoke. It further addresses a resulting second wave of parenchymal death that might be of different mode, boosting the release of additional, second-line DAMPs. Thus, triggering a more complex and pronounced response. Initial and secondary inflammatory responses comprise the activation of Kupffer cells (KCs), the attraction and activation of monocytes and neutrophil granulocytes, and the induction of type I interferons (IFNs) and their effectors. A thorough understanding of pathophysiology is a prerequisite for identifying rational therapeutic targets.


Assuntos
Alarminas/genética , Alarminas/metabolismo , Hepatite/genética , Hepatite/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Biomarcadores , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Humanos , Queratinas/genética , Queratinas/metabolismo , Mitocôndrias Hepáticas/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo
10.
Am J Drug Alcohol Abuse ; 43(1): 61-68, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27739874

RESUMO

BACKGROUND: Alcoholic fatty liver disease (AFLD) defines an important stage in the progression of alcoholic liver disease (ALD), which is a major cause of morbidity and mortality worldwide. OBJECTIVE: To establish a mouse model of AFLD. METHODS: Male C57BL/6 mice were divided into the following two groups: (i) a control group, which was allowed free access to food and water and (ii) an alcohol-treated group, which was administered a 15% (v/v) alcohol solution instead of water. After 8-9 months of treatment, serum biochemical indexes, histopathological changes, liver triglyceride content, iron storage, and ferritin light chain protein expression were measured using an automatic biochemical analyzer, hematoxylin-eosin (HE) staining, a commercially available kit, Prussian blue staining, and Western blot analysis, respectively. RESULTS: Compared with the control group, the alcohol-treated group displayed increased levels of serum LDH, ALT, and AST, decreased levels of ALB, and no significant change in levels of TP. Additionally, increased levels of serum TG, T-CHO, and LDL and decreased levels of serum GLU and HDL were observed in the alcohol-treated mice. HE staining showed that lipid vacuolization occurred in the livers of alcohol-treated mice. The alcohol-treated mice also exhibited increased liver triglyceride content. Moreover, Prussian blue staining and Western blot analysis demonstrated that chronic alcohol administration caused iron overloading of the liver. CONCLUSIONS: Chronic administration of 15% (v/v) alcohol in the drinking water over 8-9 months caused AFLD in mice. Our results establish an AFLD model that represents a promising tool for the future study of the progression of ALD.


Assuntos
Etanol/efeitos adversos , Fígado Gorduroso Alcoólico/metabolismo , Fígado/efeitos dos fármacos , Alanina Transaminase , Animais , Aspartato Aminotransferases/sangue , Colesterol/sangue , Citocromo P-450 CYP2E1/biossíntese , Modelos Animais de Doenças , Fígado Gorduroso Alcoólico/sangue , Fígado Gorduroso Alcoólico/patologia , Ferro/metabolismo , L-Lactato Desidrogenase/sangue , Lipase/sangue , Lipoproteínas HDL/sangue , Lipoproteínas LDL/sangue , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Estresse Oxidativo
11.
Curr Res Food Sci ; 8: 100699, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38420347

RESUMO

Alcohol liver disease (ALD) is a liver disease caused by long-term heavy drinking. Glucosamine (GLC) is an amino monosaccharide that plays a very important role in the synthesis of human and animal cartilage. GLC is commonly used in the treatment of mild to moderate osteoarthritis and has good anti-inflammatory and antioxidant properties. In this study, alcoholic injury models were constructed in mice and human normal hepatocyte L02 cells to explore the protective effect and mechanism of GLC on ALD. Mice were given GLC by gavage for 30 days. Liver injury models of both mice and L02 cells were produced by ethanol. Detecting the levels of liver injury biomarkers, lipid metabolism, oxidative stress biomarkers, and inflammatory factors through different reagent kits. Exploring oxidative and inflammatory pathways in mouse liver tissue through Western blot and RT-PCR. The results showed that GLC can significantly inhibit the abnormal increase of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), triglycerides (TG), total cholesterol (TC), very low density lipoprotein (VLDL), low-density lipoprotein cholesterol (LDL-C), and can significantly improve the level of high-density lipoprotein cholesterol (HDL-C). In addition, GLC intervention significantly improved alcohol induced hepatic oxidative stress by reducing the levels of malondialdehyde (MDA) and, increasing the levels of glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD) in the liver. Further mechanisms suggest that GLC can inhibit the expression of ethanol metabolism enzyme cytochrome P4502E1 (CYP2E1), activate the antioxidant pathway Keap1/Nrf2/HO-1, down-regulate the phosphorylation of MAPK and NF-κB signaling pathways, and thus reduce the expression of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6). Therefore, GLC may be a significant candidate functional food for attenuating alcohol induced acute liver injury.

12.
Int Immunopharmacol ; 141: 112938, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39163683

RESUMO

Alcoholic liver disease (ALD) is a broad category of disorders that begin with liver injury, lead to liver fibrosis, and ultimately conclude in alcohol-induced liver cirrhosis, the most chronic and irreversible liver damage. Liver fibrosis (LF) is a common pathological characteristic observed in most chronic liver inflammatory conditions that involve prolonged inflammation. In this review, we have summarized ethanol-mediated hepatic stellate cell (HSCs) activation and its role in liver fibrosis progression. We highlight important molecular mechanisms that are modulated by ethanol, play a role in the activation of HSCs and the progression of liver fibrosis and identifying potential targets to ameliorate liver fibrosis.


Assuntos
Etanol , Células Estreladas do Fígado , Hepatopatias Alcoólicas , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Humanos , Animais , Hepatopatias Alcoólicas/patologia , Hepatopatias Alcoólicas/imunologia , Hepatopatias Alcoólicas/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/imunologia , Fígado/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/imunologia , Progressão da Doença
13.
Int Immunopharmacol ; 131: 111852, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38492338

RESUMO

BACKGROUND: We recently found that butyrate could ameliorate inflammation of alcoholic liver disease (ALD) in mice. However, the exact mechanism remains incompletely comprehended. Here, we examined the role of butyrate on ALD-associated inflammation through macrophage (Mψ) regulation and polarization using in vivo and in vitro experiments. METHODS: For in vivo experiments, C57BL/6J mice were fed modified Lieber-DeCarli liquid diets supplemented with or without ethanol and sodium butyrate (NaB). After 6 weeks of treatment, mice were euthanized and associated indicators were analyzed. For in vitro experiments, lipopolysaccharide (LPS)-induced inflammatory murine RAW264.7 cells were treated with NaB or miR-155 inhibitor/mimic to verify the anti-inflammatory effect and underlying mechanism. RESULTS: The administration of NaB alleviated pathological damage and associated inflammation, including LPS, tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1ß levels in ALD mice. NaB intervention restored the imbalance of macrophage polarization by inhibiting inducible nitric oxide synthase (iNOS) and elevating arginase-1 (Arg-1). Moreover, NaB reduced histone deacetylase-1 (HDAC1), nuclear factor kappa-B (NF-κB), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), and miR-155 expression in ALD mice, but also increased peroxisome proliferator-activated receptor-γ (PPAR-γ). Thus, MiR-155 was identified as a strong regulator of ALD. To further penetrate the role of miR-155, LPS-stimulated RAW264.7 cells co-cultured with NaB were treated with the specific inhibitor or mimic. Intriguingly, miR-155 was capable of negatively regulated inflammation with NaB intervention by targeting SOCS1, SHIP1, and IRAK-M genes. CONCLUSION: Butyrate suppresses the inflammation in mice with ALD by regulating macrophage polarization via the HDAC1/miR-155 axis, which may potentially contribute to the novel therapeutic treatment for the disease.


Assuntos
Hepatite Alcoólica , Hepatopatias Alcoólicas , MicroRNAs , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Hepatopatias Alcoólicas/patologia , Inflamação/metabolismo , Macrófagos , Ácido Butírico/farmacologia , Ácido Butírico/uso terapêutico , Ácido Butírico/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , MicroRNAs/metabolismo
14.
Hepatol Int ; 18(1): 188-205, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183609

RESUMO

BACKGROUND AND PURPOSE: Alcoholic liver disease (ALD), a metabolic liver disease caused by excessive alcohol consumption, has attracted increasing attention due to its high prevalence and mortality. Up to date, there is no effective and feasible treatment method for ALD. This study was to investigate whether Farnesoid X receptor (FXR, NR1H4) can alleviate ALD and whether this effect is mediated by inhibiting absent in melanoma 2 (AIM2) inflammasome activation. METHODS: The difference in FXR expression between normal subjects and ALD patients was analyzed using the Gene Expression Omnibus (GEO) database. Lieber-DeCarli liquid diet with 5% ethanol (v/v) (EtOH) was adopted to establish the mouse ALD model. Liver histopathological changes and the accumulation of lipid droplets were assessed by H&E and Oil Red O staining. Quantitative real-time PCR, Western blotting analysis and immunofluorescence staining were utilized to evaluate the expression levels of related genes and proteins. DCFH-DA staining was adopted to visualize reactive oxidative species (ROS). RESULTS: FXR was distinctly downregulated in liver tissues of patients with steatosis compared to normal livers using the GEO database, and in ethanol-induced AML-12 cellular steatosis model. FXR overexpression ameliorated hepatic lipid metabolism disorder and steatosis induced by ethanol by inhibiting the expression of genes involved in lipid synthesis and inducing the expression of genes responsible for lipid metabolism. Besides, FXR overexpression inhibited ethanol-induced AIM2 inflammasome activation and alleviated oxidative stress and ROS production during ethanol-induced hepatic steatosis. However, when FXR was knocked down, the results were completely opposite. CONCLUSIONS: FXR attenuated lipid metabolism disorders and lipid degeneration in alcohol-caused liver injury and alleviated oxidative stress and inflammation by inhibiting AIM2 inflammasome activation.


Assuntos
Fígado Gorduroso , Hepatopatias Alcoólicas , Melanoma , Animais , Humanos , Camundongos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Etanol/efeitos adversos , Etanol/metabolismo , Fígado Gorduroso/etiologia , Inflamassomos/efeitos adversos , Inflamassomos/metabolismo , Lipídeos , Fígado/patologia , Hepatopatias Alcoólicas/prevenção & controle , Hepatopatias Alcoólicas/genética , Espécies Reativas de Oxigênio/metabolismo
15.
Cureus ; 16(5): e60898, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38784689

RESUMO

Background The hepatoprotective function of polyherbal formulation Liv.52 in chronic liver diseases is well recognized in published literature. The objective of this open-label, phase IV study was to further strengthen and validate its safety and effectiveness using a large patient pool in a real-world scenario and provide scientific data on symptomatic improvement and supportive treatment in liver function with improvement in quality of life. Methods Adult patients of either sex with one or more clinical symptoms like fatigue, nausea, anorexia, abdominal pain or discomfort, muscle cramps, jaundice, or any other signs and symptoms with a history suggestive of mild-to-moderate hepatic disorders like alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), drug-induced hepatotoxicity, or hepatitis were treated with two Liv.52 DS tablets (oral) twice daily for 12 weeks. Results Out of the 1000 enrolled patients, 962 (96%) completed the study with the following subgroups ALD: 375 (38.9%), NAFLD: 379 (39.3%), drug-induced hepatotoxicity: 78 (8.1%), hepatitis: 130 (13.5%). The mean age of enrolled patients was 37.7 years, and the majority of them, 785 (78.5%) were men. The common adverse events observed (with >1.5% incidence) in the study were abdominal pain: 26 (2.6%) and headache: 17 (1.7%). Liv.52 showed statistically significant improvement (P<0.0001) in various clinical signs and symptoms in the majority of patients namely, fatigue: 357/723 (49%), anorexia: 485/620 (78.2%), jaundice: 48/52 (92%). Majority of the patients showed significant improvements from baseline to end of 12 weeks in the liver function test parameters namely, aspartate aminotransferase: 633/840 (75.36%), alanine aminotransferase: 592/729 (81.21%), serum bilirubin: 244/347 (70.32%), alkaline phosphatase: 279/355 (78.59%) with P<0.0001 for all parameters. Statistically significant improvement (P<0.005) was also seen in all the components of the chronic liver disease questionnaire (CLDQ) scores from baseline to 12 weeks. Conclusions The study demonstrated that Liv.52 was hepatoprotective and well tolerated in the study population after treatment for 12 weeks. Significant improvements were seen in clinical signs and symptoms, laboratory parameters of liver function, and CLDQ scores from baseline to 12 weeks. No significant or new safety signals emerged from this study.

16.
Dig Liver Dis ; 56(1): 112-122, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37407321

RESUMO

The gut microbiome and its metabolites are involved in developing and progressing liver disease. Various liver illnesses, such as non-alcoholic fatty liver disease, alcoholic liver disease, hepatitis C, and hepatocellular carcinoma, are made worse and have worse prognoses with aging. Dysbiosis, which occurs when the symbiosis between the microbiota and the host is disrupted, can significantly negatively impact health. Liver disease is linked to qualitative changes, such as an increase in hazardous bacteria and a decrease in good bacteria, as well as quantitative changes in the overall amount of bacteria (overgrowth). Intestinal gut microbiota and their metabolites may lead to chronic liver disease development through various mechanisms, such as increasing gut permeability, persistent systemic inflammation, production of SCFA, bile acids, and alteration in metabolism. Age-related gut dysbiosis can disrupt the communication between gut microbiota and the host, impacting the host's health and lifespan. With aging, a gradual loss of the ability to maintain homeostasis because of structural alteration and gut dysbiosis leads to the disease progression in end-stage liver disease. Recently chronic liver disease has been identified as a global problem. A large number of patients are receiving liver transplants yearly. Thereby gut microbiome ecology is changing in the patients of the gut due to the changes in pathophysiology during the preoperative stage. The present review summarises the age-associated dysbiosis of gut microbial composition and its contribution to chronic liver disease. This review also provides information about the impact of liver transplant on the gut microbiome and possible disadvantageous effects of alteration in gut microbiota.


Assuntos
Microbioma Gastrointestinal , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Microbioma Gastrointestinal/fisiologia , Disbiose/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Neoplasias Hepáticas/metabolismo
17.
Front Public Health ; 11: 1192099, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538264

RESUMO

Background: Non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease are among the most common liver diseases worldwide, and there are currently no Food and Drug Administration (FDA)-approved treatments. Recent studies have focused on lifestyle changes to prevent and treat NAFLD. Omega-3 supplementation is associated with improved outcomes in patients with chronic liver disease. However, it is unclear whether Omega-3 supplementation can prevent the development of liver disease, particularly in individuals at an increased (genetic) risk. Methods: In this UK Biobank cohort study, we established a multivariate cox proportional hazards model for the risk of incident liver disease during an 11 year follow up time. We adjusted the model for diabetes, prevalent cardiovascular disorders, socioeconomic status, diet, alcohol consumption, physical activity, medication intake (insulin, biguanides, statins and aspirin), and baseline characteristics. Results: Omega-3 supplementation reduced the risk of incident liver disease (HR = 0.716; 95% CI: 0.639, 0.802; p = 7.6 × 10-9). This protective association was particularly evident for alcoholic liver disease (HR = 0.559; 95% CI: 0.347, 0.833; p = 4.3 × 10-3), liver failure (HR = 0.548; 95% CI: 0.343, 0.875; p = 1.2 × 10-2), and non-alcoholic liver disease (HR = 0.784; 95% CI: 0.650, 0.944; p = 1.0 × 10-2). Interestingly, we were able to replicate the association with reduced risk of NAFLD in a subset with liver MRIs (HR = 0.846; 95% CI: 0.777, 0.921; p = 1.1 × 10-4). In particular, women benefited from Omega-3 supplementation as well as heterozygous allele carriers of the liver-damaging variant PNPLA3 rs738409. Conclusions: Omega-3 supplementation may reduce the incidence of liver disease. Our study highlights the potential of personalized treatment strategies for individuals at risk of metabolic liver disease. Further evaluation in clinical trials is warranted before Omega-3 can be recommended for the prevention of liver disease.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Feminino , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Estudos de Coortes , Fatores de Risco , Dieta
18.
Front Mol Biosci ; 10: 1147301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923641

RESUMO

Excessive and chronic alcohol intake can lead to the progression of alcoholic liver disease (ALD), which is a major cause of morbidity and mortality worldwide. ALD encompasses a pathophysiological spectrum such as simple steatosis, alcoholic steatohepatitis (ASH), fibrosis, alcoholic cirrhosis, and hepatocellular carcinoma (HCC). Aldehyde dehydrogenase (ALDH2) is the most vital enzyme that produces acetate from acetaldehyde and is expressed at high levels in the liver, kidneys, muscles, and heart. The ALDH2*2 allele is found in up to 40% of East Asian populations, and has a significant impact on alcohol metabolism. Interestingly, several studies have shown that individuals with ALDH2 deficiency are more susceptible to liver inflammation after drinking alcohol. Furthermore, there is growing evidence of an association between ALDH2 deficiency and the development of cancers in the liver, stomach, colon, and lung. Isoflavone analogues are low molecular-weight compounds derived from plants, similar in structure and activity to estrogen in mammals, known as phytoestrogens. Recent studies have reported that isoflavone analogues have beneficial effects on the progression of ALD. This mini-review summarizes the current knowledge about the roles of isoflavone analogues in ALD and discusses the therapeutic potential of isoflavone analogues in liver pathophysiology. In particular, we highlight the significance of computational approaches in this field.

19.
Cells ; 12(18)2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37759472

RESUMO

Liver diseases represent a significant global health challenge, thereby necessitating extensive research to understand their intricate complexities and to develop effective treatments. In this context, zebrafish (Danio rerio) have emerged as a valuable model organism for studying various aspects of liver disease. The zebrafish liver has striking similarities to the human liver in terms of structure, function, and regenerative capacity. Researchers have successfully induced liver damage in zebrafish using chemical toxins, genetic manipulation, and other methods, thereby allowing the study of disease mechanisms and the progression of liver disease. Zebrafish embryos or larvae, with their transparency and rapid development, provide a unique opportunity for high-throughput drug screening and the identification of potential therapeutics. This review highlights how research on zebrafish has provided valuable insights into the pathological mechanisms of human liver disease.


Assuntos
Hepatopatias , Peixe-Zebra , Humanos , Animais , Ensaios de Triagem em Larga Escala , Larva
20.
Eur J Med Res ; 28(1): 31, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36650608

RESUMO

BACKGROUND: Fib4 index (Fib4) is clinically used as a noninvasive marker of liver fibrosis. In this study, we aimed to preliminarily investigate whether Fib4 can be used to detect individuals who need assessment for alcoholic liver disease (ALD) in the general population by clarifying the detailed association of Fib4 with alcohol consumption and gamma-glutamyl transferase (GGT) among male workers. METHODS: We analyzed data sets on the comprehensive medical examinations of male workers as cross-sectional and retrospectively longitudinal studies. We enrolled 10 782 males (mean age: 52.2 ± 10.2 years) in FY2019 and 7845 males (mean follow-up: 12.6 ± 6.7 years) who could be consecutively followed up for 20 years from FY2000 to FY2019. Data were evaluated using logistic regression and COX proportional analysis. RESULTS: In the cross-sectional setting, the rate of Fib4 ≥ 2.67 in heavy drinkers (≥ 40 g of ethanol/day) was increased dose dependently in those over 65 years old, and that of body mass index ≥ 30 kg/m2 was increased in those over 60 years old, but not in those with fatty liver. The odds ratio (OR) (95% confidence interval [CI]) for heavy drinking was 4.30 (95% CI = 1.90-9.72), and GGT ≥ 200 IU/L was considerably high (OR = 29.05 [95% CI = 17.03-49.56]). In the longitudinal setting, heavy drinkers and those with GGT ≥ 200 IU/L at 10 years after the baseline showed an increased risk for Fib4 ≥ 2.67 (hazard ratio = 2.17 [95% CI = 1.58-2.98] and 7.65 [95% CI 5.26-11.12], respectively). CONCLUSIONS: The development of Fib4 ≥ 2.67 after 10 years was associated with heavy alcohol drinking and GGT level ≥ 200 IU/L. Therefore, Fib4 combined with GGT could indicate high risk of ALD. However, clinical examinations and course observations are essentially needed.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Adulto , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Consumo de Bebidas Alcoólicas/efeitos adversos , Biomarcadores , Estudos Transversais , População do Leste Asiático , gama-Glutamiltransferase , Estudos Longitudinais , Estudos Retrospectivos , Japão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA