Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Small ; : e2404351, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39161205

RESUMO

Titanium and titanium alloys remain the gold standard for dental and orthopedic implants. These materials are heavily used because of their bioinert nature, robust mechanical properties, and seamless integration with bone. However, implant-associated infections (IAIs) remain one of the leading causes of implant failure. Eradicating an IAI can be difficult since bacteria can form biofilms on the medical implant, protecting the bacterial cells against systemic antibiotics and the host's immune system. If the infection is not treated promptly and aggressively, device failure is inevitable, leading to costly multi-step revision surgeries. To circumvent this dire situation, scientists and engineers continue to develop novel strategies to protect the surface of medical implants from bacteria. In this review, details on emerging strategies to prevent infection in titanium implants are reported. These strategies include anti-adhesion properties provided by polymers, superhydrophobic, superhydrophilic, and liquid-infused surface coatings, as well as strategies and coatings employed to lyse the bacteria. Additionally, commercially available technologies and those under preclinical trials are examined while discussing current and future trends.

2.
Macromol Rapid Commun ; 45(16): e2400170, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936823

RESUMO

A challenge remains in the development of anti-infectious coatings for the inert surfaces of biomedical devices that are prone to bacterial colonization and biofilm formation. Here, a facile photocuring method to construct functionalized polymeric coatings on inert polydimethylsiloxane (PDMS) surfaces, is developed. Using atom transfer radical polymerization (ATRP) initiator bearing thymol group, hydrophilic DMAEMA and benzophenone (BP)-containing monomers are copolymerized to form polymers with end functional groups. An end-functionalized biocidal coating is then constructed on the inert PDMS surface in one step using a photocuring reaction. The functionalized PDMS surfaces show excellent antibacterial and antifouling properties, are capable of completely eradiating MRSA within ≈6 h, and effectively inhibit the growth of biofilms. In addition, they have good stability and long-lasting antibacterial activity in body fluid environments such as 0.9% saline and urine. According to bladder model experiments, the catheter's lifespan can be extended from ≈7 to 35 days by inhibiting the growth and migration of bacteria along its inner surface. The photocuring technique is therefore very promising in terms of surface functionalization of inert biomedical devices in order to minimize the spread of infection.


Assuntos
Antibacterianos , Biofilmes , Dimetilpolisiloxanos , Propriedades de Superfície , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Dimetilpolisiloxanos/química , Biofilmes/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Polímeros/química , Polímeros/farmacologia , Processos Fotoquímicos , Benzofenonas/química , Benzofenonas/farmacologia , Polimerização , Estrutura Molecular
3.
J Therm Spray Technol ; 30(1-2): 25-39, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38624650

RESUMO

Microbial and viral pathogen contamination of touch surfaces contributes to the rapid transmission of diseases. It has been known for decades that microbes and viruses are rapidly inactivated when exposed to copper and its alloys. Consequently, the use of thermal spray technologies to coat surfaces in healthcare and public settings has been receiving a considerable amount of interest during recent viral pandemics and particularly now with COVID-19. This review is focused on recent successes using thermal spray technology to uniformly coat metal and organic surfaces, providing a rapid and economical means of inhibiting fomite transmission of pathogens on diverse surfaces with complex topographies. Emphasis is placed on the influence of lamella structure, porosity, and roughness of the coatings as it pertains to biocidal activity and the implications of using this knowledge to optimize the ability of copper coatings to irreversibly inactivate viral pathogens, regardless of their genomic mutation rates. Results of the long-term performance of the copper alloy coatings in real hospital settings in Canada and Peru are also presented.

4.
Heliyon ; 10(4): e26347, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38404882

RESUMO

Surface modification of electrically neutral hydrophilic polymers is one of the most promising methods for preventing biofouling and biological contamination by proteins and bacteria. Surface modification of inorganic materials such as silica-based glass can render them more durable and thus help in achieving the sustainable development goals. This study reports a novel method for the simple and effective surface modification of glass surfaces with amphiphilic block copolymers possessing the silane coupling segment composed of 3-(methacryloyloxy)propyltris (trimethylsilyloxy) silane and 3-methacryloxypropyltrimethoxysilane. The ability of hydrophilic segments composed of either 2-methacryloyloxyethyl phosphorylcholine (MPC) or poly(ethylene glycol) methyl ether methacrylate (mOEGMA) to prevent bacterial adhesion was investigated. The target block copolymers were prepared by reversible addition-fragmentation chain transfer polymerization and the monomer units of the hydrophilic segments were controlled to be either 120 or 160. The polymers were modified on the substrate by dip-coating. Contact angle measurements indicated that the block copolymer with the PMPC hydrophilic segment formed a hydrophilic surface without pre-hydration, while those with the PmOEGMA hydrophilic segment-coated surface became hydrophilic upon immersion in water. The block copolymer-coated surfaces decreased S. aureus adhesion, and a significant reduction was observed with the MPC-type block copolymer. The following surface design guidelines were thus concluded: (1) the block copolymer is superior to the random copolymer and (2) increasing the hydrophilic segment length further decreases bacterial adhesion.

5.
Gels ; 10(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38920944

RESUMO

Hospital-acquired infections are considered a priority for public health systems since they pose a significant burden for society. High-touch surfaces of healthcare centers, including textiles, provide a suitable environment for pathogenic bacteria to grow, necessitating incorporating effective antibacterial agents into textiles. This paper introduces a highly durable antibacterial gel-like solution, Silver Shell™ finish, which contains chitosan-bound silver chloride microparticles. The study investigates the coating's environmental impact, health risks, and durability during repeated washing. The structure of the Silver Shell™ finish was studied using transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX). The TEM images showed a core-shell structure, with chitosan forming a protective shell around groupings of silver microparticles. The field-emission scanning electron microscopy (FESEM) demonstrated the uniform deposition of Silver Shell™ on the surfaces of the fabrics. AATCC Test Method 100 was employed to quantitatively analyze the antibacterial properties of the fabrics coated with silver microparticles. Two types of bacteria, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), were used in this study. The antibacterial results showed that after 75 wash cycles, a 100% reduction for both S. aureus and E. coli in the coated samples using crosslinking agents was observed. The coated samples without a crosslinking agent exhibited 99.88% and 99.81% reductions for S. aureus and E. coli after 50 washing cycles. To compare the antibacterial properties toward non-pathogenic and pathogenic strains of the same species, MG1655 model E. coli strain (ATCC 29213) and a multidrug-resistant clinical isolate were used. The results showed the antibacterial efficiency of the Silver ShellTM solution (up to 99.99% reduction) coated on cotton fabric. AATCC-147 was performed to investigate the coated samples' leaching properties and the crosslinking agent's effects against S. aureus and E. coli. All coated samples demonstrated remarkable antibacterial efficacy, even after 75 wash cycles. The crosslinking agent facilitated durable attachment between the silver microparticles and cotton substrate, minimizing the release of particles from the fabrics. Color measurements were conducted to assess the color differences resulting from the coating process. The results indicated fixation values of 44%, 32%, and 28% following 25, 50, and 75 washing cycles, respectively.

6.
Front Bioeng Biotechnol ; 12: 1347811, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665815

RESUMO

Infections of implants and prostheses represent relevant complications associated with the implantation of biomedical devices in spine surgery. Indeed, due to the length of the surgical procedures and the need to implant invasive devices, infections have high incidence, interfere with osseointegration, and are becoming increasingly difficult to threat with common therapies due to the acquisition of antibiotic resistance genes by pathogenic bacteria. The application of metal-substituted tricalcium phosphate coatings onto the biomedical devices is a promising strategy to simultaneously prevent bacterial infections and promote osseointegration/osseoinduction. Strontium-substituted tricalcium phosphate (Sr-TCP) is known to be an encouraging formulation with osseoinductive properties, but its antimicrobial potential is still unexplored. To this end, novel Sr-TCP coatings were manufactured by Ionized Jet Deposition technology and characterized for their physiochemical and morphological properties, cytotoxicity, and bioactivity against Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 6538P human pathogenic strains. The coatings are nanostructured, as they are composed by aggregates with diameters from 90 nm up to 1 µm, and their morphology depends significantly on the deposition time. The Sr-TCP coatings did not exhibit any cytotoxic effects on human cell lines and provided an inhibitory effect on the planktonic growth of E. coli and S. aureus strains after 8 h of incubation. Furthermore, bacterial adhesion (after 4 h of exposure) and biofilm formation (after 24 h of cell growth) were significantly reduced when the strains were cultured on Sr-TCP compared to tricalcium phosphate only coatings. On Sr-TCP coatings, E. coli and S. aureus cells lost their organization in a biofilm-like structure and showed morphological alterations due to the toxic effect of the metal. These results demonstrate the stability and anti-adhesion/antibiofilm properties of IJD-manufactured Sr-TCP coatings, which represent potential candidates for future applications to prevent prostheses infections and to promote osteointegration/osteoinduction.

7.
Colloids Surf B Biointerfaces ; 238: 113914, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663310

RESUMO

Combining with various antibacterial mechanisms is the preferred strategy to fabricate coatings with effective antibacterial performance. Herein, Cu2O nanoparticles and dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium chloride, a kind of quaternary ammonium salt (QAS), were simultaneously incorporated into a moisture-curable acrylic resin in order to achieve both contact-killing and release-killing abilities for antibacterial coatings. The surface morphology, surface composition and basic properties of the coatings were thoroughly characterized. The antibacterial performance of the coatings was determined by in-vitro bacteriostatic test. Under the constant total mass fraction of antibacterial agents, both Cu2O and QAS content possessed the highest value on the coating surface at Cu2O/QAS mass ratio of 1:1, and correspondingly, the coatings reached sterilizing rate above 99 % against both E. coli and S. loihica, indicating the existence of synergistic effect between Cu2O and QAS. The synergistic antibacterial mechanism of the coatings involved two aspects. Firstly, the combination of contact-killing and release-killing biocides resulted in high bactericidal and antibiofilm activity against different bacteria. Further, the grafting of QAS molecules on the surface of Cu2O particles brought about the spontaneous migration of nanoparticles to the coating surface. The interaction between Cu2O and QAS also inhibited the phase separation of QAS and prolonged the release of Cu2+ at the same time. The coatings, therefore, exhibited stable antibacterial performance at varied service conditions.


Assuntos
Antibacterianos , Cobre , Escherichia coli , Testes de Sensibilidade Microbiana , Compostos de Amônio Quaternário , Propriedades de Superfície , Cobre/química , Cobre/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Escherichia coli/efeitos dos fármacos , Tamanho da Partícula , Nanopartículas/química , Nanopartículas Metálicas/química , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia
8.
Colloids Surf B Biointerfaces ; 240: 113997, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38815309

RESUMO

In this paper, a simple, bottom up, bioinspired technique is proposed for the synthesis of highly stable colloids of silica supported spherical silver nanoparticles (SiO2@Ag) that act as efficient catalytic and antimicrobial coatings for an organic substrate, filter paper. The core - shell structure and the highly branched dendritic polymer, poly(ethylene)imine, enabled the precise control of growth rate and morphology of silica and silver nanoparticles. The polymer also enabled the deposition of these nanoparticles onto an organic substrate, filter paper, through immersion by modifying its surface. The catalytic and antibacterial properties of these samples were assessed. The results obtained from this analysis showed a complete degradation of an aqueous pollutant, 4-nitrophenol, for 6 successive catalytic cycles without intermediate purification steps. Furthermore, the polymeric silica-silver suspension proved to express antibacterial activity against both Gram-positive and Gram-negative bacteria (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa). The antibacterial properties were evaluated according to the disk diffusion method, whereas the Minimum Inhibitory Concentration was also determined. The samples were examined by Scanning Electron Microscopy, Transmission Electron Microscopy, X-ray diffraction analysis, z-potential analysis, Fourier Transform Infrared Spectroscopy and Ultraviolet-visible Spectroscopy.


Assuntos
Antibacterianos , Coloides , Testes de Sensibilidade Microbiana , Dióxido de Silício , Prata , Prata/química , Prata/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Catálise , Coloides/química , Nanopartículas Metálicas/química , Polímeros/química , Polímeros/farmacologia , Polímeros/síntese química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Papel , Staphylococcus aureus/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Propriedades de Superfície , Tamanho da Partícula , Nitrofenóis/química
9.
Nanomaterials (Basel) ; 14(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38998753

RESUMO

One of the primary risk factors for implant failure is thought to be implant-related infections during the early healing phase. Developing coatings with cell stimulatory behaviour and bacterial adhesion control is still difficult for bone implants. This study proposes an approach for one-step deposition of biocompatible and antimicrobial Cu-doped TiO2 coatings via glow-discharge sputtering of a mosaic target. During the deposition, the bias of the Ti6Al4V substrates was changed. Structure examination, phase analysis, and surface morphology were carried out using X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The hardness values and hydrophilic and corrosion performance were also evaluated together with cytocompatible and antibacterial examinations against E. coli and S. aureus. The results show great chemical and phase control of the bias identifying rutile, anatase, CuO, or ternary oxide phases. It was found that by increasing the substrate bias from 0 to -50 V the Cu content increased from 15.3 up to 20.7 at% while at a high bias of -100 V, the copper content reduced to 3 at%. Simultaneously, apart from the Cu2+ state, Cu1+ is also found in the biased samples. Compared with the bare alloy, the hardness, the water contact angle and corrosion resistance of the biased coatings increased. According to an assessment of in vitro cytocompatibility, all coatings were found to be nontoxic to MG-63 osteoblast cells over the time studied. Copper release and cell-surface interactions generated an antibacterial effect against E. coli and S. aureus strains. The -50 V biased coating combined the most successful results in inhibiting bacterial growth and eliciting the proper responses from osteoblastic cells because of its phase composition, electrochemical stability, hydrophilicity, improved substrate adhesion, and surface roughness. Using this novel surface modification approach, we achieved multifunctionality through controlled copper content and oxide phase composition in the sputtered films.

10.
Gels ; 9(12)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38131916

RESUMO

The objective of this study was to analyze a natural and safe oleogel with antimicrobial properties that can replace animal fats while lengthening the product's shelf life. The oleogel was created using direct dispersion (MG-SO), and its material characterization exhibited the exceptional performance of the hybrid gelant. Additionally, citral was integrated into the oil gel to prepare the citral oleogel (MG-SO). The antimicrobial nature of the material was examined and the findings revealed that it inhibited the growth of various experimental model bacteria, including Escherichia coli, Staphylococcus aureus, Aspergillus niger, Botrytis cinerea, and Rhizopus stolonifer. In addition, the material had a comparable inhibitory impact on airborne microorganisms. Lastly, MG-SON was utilized in plant-based meat patties and demonstrated an ability to significantly reduce the growth rate of microorganisms.

11.
Antibiotics (Basel) ; 12(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38136691

RESUMO

In recent years, antibacterial coatings have become an important approach in the global fight against bacterial pathogens. Developments in materials science, chemistry, and biochemistry have led to a plethora of materials and chemical compounds that have the potential to create antibacterial coatings. However, insufficient attention has been paid to the analysis of the techniques and technologies used to apply these coatings. Among the various inorganic coating techniques, atomic layer deposition (ALD) is worthy of note. It enables the successful synthesis of high-purity inorganic nanocoatings on surfaces of complex shape and topography, while also providing precise control over their thickness and composition. ALD has various industrial applications, but its practical application in medicine is still limited. In recent years, a considerable number of papers have been published on the proposed use of thin films and coatings produced via ALD in medicine, notably those with antibacterial properties. The aim of this paper is to carefully evaluate and analyze the relevant literature on this topic. Simple oxide coatings, including TiO2, ZnO, Fe2O3, MgO, and ZrO2, were examined, as well as coatings containing metal nanoparticles such as Ag, Cu, Pt, and Au, and mixed systems such as TiO2-ZnO, TiO2-ZrO2, ZnO-Al2O3, TiO2-Ag, and ZnO-Ag. Through comparative analysis, we have been able to draw conclusions on the effectiveness of various antibacterial coatings of different compositions, including key characteristics such as thickness, morphology, and crystal structure. The use of ALD in the development of antibacterial coatings for various applications was analyzed. Furthermore, assumptions were made about the most promising areas of development. The final section provides a comparison of different coatings, as well as the advantages, disadvantages, and prospects of using ALD for the industrial production of antibacterial coatings.

12.
Int J Spine Surg ; 17(S3): S75-S85, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38135445

RESUMO

Spine surgeries are occurring more frequently worldwide. Spinal implant infections are one of the most common complications of spine surgery, with a rate of 0.7% to 11.9%. These implant-related infections are a consequence of surface polymicrobial biofilm formation. New technologies to combat implant-related infections are being developed as their burden increases; however, none have reached the market stage in spine surgery. Conferring antimicrobial properties to biomaterials relies on either surface coating (physical, chemical, or combined) or surface modification (physical, chemical, or combined). Such treatment can also result in toxicity and the progression of antimicrobial resistance. This narrative review will discuss "late-stage" antimicrobial technologies (mostly validated in vivo) that use these techniques and may be incorporated onto spine implants to decrease the burden of implant-related health care-acquired infections (HAIs). Successfully reducing this burden will greatly improve the quality of life in spine surgery. Familiarity with upcoming surface technologies will help spine surgeons understand the anti-infective strategies designed to address the rapidly worsening challenge of implant-related health care-acquired infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA