Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 51(4): 750-765.e10, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31492649

RESUMO

Immunity that controls parasitemia and inflammation during Plasmodium falciparum (Pf) malaria can be acquired with repeated infections. A limited understanding of this complex immune response impedes the development of vaccines and adjunctive therapies. We conducted a prospective systems biology study of children who differed in their ability to control parasitemia and fever following Pf infection. By integrating whole-blood transcriptomics, flow-cytometric analysis, and plasma cytokine and antibody profiles, we demonstrate that a pre-infection signature of B cell enrichment, upregulation of T helper type 1 (Th1) and Th2 cell-associated pathways, including interferon responses, and p53 activation associated with control of malarial fever and coordinated with Pf-specific immunoglobulin G (IgG) and Fc receptor activation to control parasitemia. Our hypothesis-generating approach identified host molecules that may contribute to differential clinical outcomes during Pf infection. As a proof of concept, we have shown that enhanced p53 expression in monocytes attenuated Plasmodium-induced inflammation and predicted protection from fever.


Assuntos
Linfócitos B/imunologia , Proteínas Sanguíneas/metabolismo , Inflamação/metabolismo , Malária Falciparum/metabolismo , Plasmodium falciparum/fisiologia , Células Th1/imunologia , Células Th2/imunologia , Proteína Supressora de Tumor p53/metabolismo , Adolescente , Adulto , Animais , Anticorpos Antiprotozoários/metabolismo , Criança , Pré-Escolar , Resistência à Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Lactente , Interferons/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estudos Prospectivos , Receptores Fc/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Adulto Jovem
2.
Mol Cell Proteomics ; 23(2): 100710, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154690

RESUMO

Antibody glycosylation plays a crucial role in the humoral immune response by regulating effector functions and influencing the binding affinity to immune cell receptors. Previous studies have focused mainly on the immunoglobulin G (IgG) isotype owing to the analytical challenges associated with other isotypes. Thus, the development of a sensitive and accurate analytical platform is necessary to characterize antibody glycosylation across multiple isotypes. In this study, we have developed an analytical workflow using antibody-light-chain affinity beads to purify IgG, IgA, and IgM from 16 µL of human plasma. Dual enzymes, trypsin and Glu-C, were used during on-bead digestion to obtain enzymatic glycopeptides and protein-specific surrogate peptides. Ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry was used in order to determine the sensitivity and specificity. Our platform targets 95 glycopeptides across the IgG, IgA, and IgM isotypes, as well as eight surrogate peptides representing total IgG, four IgG classes, two IgA classes, and IgM. Four stable isotope-labeled internal standards were added after antibody purification to calibrate the preparation and instrumental bias during analysis. Calibration curves constructed using serially diluted plasma samples showed good curve fitting (R2 > 0.959). The intrabatch and interbatch precision for all the targets had relative standard deviation of less than 29.6%. This method was applied to 19 human plasma samples, and the glycosylation percentages were calculated, which were comparable to those reported in the literature. The developed method is sensitive and accurate for Ig glycosylation profiling. It can be used in clinical investigations, particularly for detailed humoral immune profiling.


Assuntos
Glicopeptídeos , Imunoglobulina G , Humanos , Glicosilação , Imunoglobulina G/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas , Glicopeptídeos/metabolismo , Digestão , Imunoglobulina A , Imunoglobulina M
3.
Immunol Cell Biol ; 101(3): 231-248, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36567516

RESUMO

Vaccination and natural infection both elicit potent humoral responses that provide protection from subsequent infections. The immune history of an individual following such exposures is in part encoded by antibodies. While there are multiple immunoassays for measuring antibody responses, the majority of these methods measure responses to a single antigen. A commonly used method for measuring antibody responses is ELISA-a semiquantitative assay that is simple to perform in research and clinical settings. Here, we present FLU-LISA (fluorescence-linked immunosorbent assay)-a novel antigen microarray-based assay for rapid high-throughput antibody profiling. The assay can be used for profiling immunoglobulin (Ig) G, IgA and IgM responses to multiple antigens simultaneously, requiring minimal amounts of sample and antigens. Using several influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen microarrays, we demonstrated the specificity and sensitivity of our novel assay and compared it with the traditional ELISA, using samples from mice, chickens and humans. We also showed that our assay can be readily used with dried blood spots, which can be collected from humans and wild birds. FLU-LISA can be readily used to profile hundreds of samples against dozens of antigens in a single day, and therefore offers an attractive alternative to the traditional ELISA.


Assuntos
COVID-19 , Influenza Humana , Humanos , Animais , Camundongos , Imunoadsorventes , Anticorpos Antivirais , Galinhas , SARS-CoV-2 , Antígenos , Ensaio de Imunoadsorção Enzimática , Imunoglobulina G , Imunoglobulina M
4.
Brain Behav Immun ; 107: 193-200, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36243286

RESUMO

Monoamine oxidase A (MAO A) is the critical enzyme to degrade serotonin in the brain and the knockout mouse exhibits hyperserotonemia and abnormalities that are observed in autism spectrum disorder (ASD). Thus, the MAO A knockout mouse is a valuable model for studying neurological and behavioral impairments in ASD. Based on the immune dysfunction hypothesis, dysregulated humoral immunity may cause neurological impairments. To address this hypothesis, we use high-density proteome microarray to profile the serum antibodies in both wild-type and MAO A knockout mice. The distingue autoantibody signatures were observed in the MAO A knockout and wild-type controls and showed 165 up-regulated and 232 down-regulated autoantibodies. The up-regulated autoantibodies were prone to target brain tissues while down-regulated ones were enriched in sex organs. The identified autoantibodies help bridge the gap between ASD mouse models and humoral immunity, not only yielding insights into the pathological mechanisms but also providing potential biomarkers for translational research in ASD.


Assuntos
Transtorno do Espectro Autista , Monoaminoxidase , Animais , Camundongos , Camundongos Knockout , Monoaminoxidase/genética , Transtorno do Espectro Autista/genética , Autoanticorpos
5.
Ann Diagn Pathol ; 41: 24-37, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31132649

RESUMO

PD-L1 is a surface molecule which is expressed on different types of cells, including antigen presenting cells, vascular endothelial cells and other cells of human tissues. Expression of PD-L1 is also found on human tumor cells. PD-L1 as the ligand to PD1 receptor molecule of CD8+ T cells inhibits its cytotoxic effect on the tumor cell. The modern target therapy uses this interaction to inhibit the PD-1 molecule of T cells to stimulate tumor necrosis. To compare expression differences, twelve frequent types of malignant tumors with ten patients per group were selected. Immunohistochemical stains with different antibodies for PD-L1 (DAKO, Spring Bioscience, Ventana, Cell Signaling, Biocare Medical, Abcam, Zeta Corporation) were performed, analyzed and compared. To summarize, we detected variable expression pattern of PD-L1 with general higher mean value of expression of tumor cells with clone SP263 in most tumor groups. In the comparison of selected cases of lung cancer, therapy relevant differences of PD-L1 expression on tumor cells with different antibodies were observed. Additionally, the profiling study of several PD-L1-antibody clones (28-8 Abcam and 28-8 DAKO, SP142, SP263) with Signal-to-Amino Acid Residue Plots was performed with interesting findings of cross-activity of SP142 with two peptides from PD-1, which can explain why clone SP142 stains immune cells more intensively, as previously published.


Assuntos
Anticorpos Monoclonais , Antígeno B7-H1/análise , Biomarcadores Tumorais/análise , Neoplasias , Especificidade de Anticorpos , Células Clonais , Reações Cruzadas , Humanos , Imuno-Histoquímica/métodos
6.
Expert Rev Proteomics ; 14(7): 627-641, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28644690

RESUMO

INTRODUCTION: High-content protein microarrays in principle enable the functional interrogation of the human proteome in a broad range of applications, including biomarker discovery, profiling of immune responses, identification of enzyme substrates, and quantifying protein-small molecule, protein-protein and protein-DNA/RNA interactions. As with other microarrays, the underlying proteomic platforms are under active technological development and a range of different protein microarrays are now commercially available. However, deciphering the differences between these platforms to identify the most suitable protein microarray for the specific research question is not always straightforward. Areas covered: This review provides an overview of the technological basis, applications and limitations of some of the most commonly used full-length, recombinant protein and protein fragment microarray platforms, including ProtoArray Human Protein Microarrays, HuProt Human Proteome Microarrays, Human Protein Atlas Protein Fragment Arrays, Nucleic Acid Programmable Arrays and Immunome Protein Arrays. Expert commentary: The choice of appropriate protein microarray platform depends on the specific biological application in hand, with both more focused, lower density and higher density arrays having distinct advantages. Full-length protein arrays offer advantages in biomarker discovery profiling applications, although care is required in ensuring that the protein production and array fabrication methodology is compatible with the required downstream functionality.


Assuntos
Análise Serial de Proteínas/métodos , Proteômica/métodos , Humanos , Mapeamento de Interação de Proteínas/métodos
8.
Front Immunol ; 15: 1335446, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318184

RESUMO

Introduction: Lyme disease (LD), a rapidly growing public health problem in the US, represents a formidable challenge due to the lack of detailed understanding about how the human immune system responds to its pathogen, the Borrelia burgdorferi bacterium. Despite significant advances in gaining deeper insight into mechanisms the pathogen uses to evade immune response, substantial gaps remain. As a result, molecular tools for the disease diagnosis are lacking with the currently available tests showing poor performance. High interpersonal variability in immune response combined with the ability of the pathogen to use a number of immune evasive tactics have been implicated as underlying factors for the limited test performance. Methods: This study was designed to perform a broad profiling of the entire repertoire of circulating antibodies in human sera at the single-individual level using planar arrays of short linear peptides with random sequences. The peptides sample sparsely, but uniformly the entire combinatorial sequence space of the same length peptides for profiling the humoral immune response to a B.burg. infection and compare them with other diseases with etiology similar to LD and healthy controls. Results: The study revealed substantial variability in antibody binding profiles between individual LD patients even to the same antigen (VlsE protein) and strong similarity between individuals diagnosed with Lyme disease and healthy controls from the areas endemic to LD suggesting a high prevalence of seropositivity in endemic healthy control. Discussion: This work demonstrates the utility of the approach as a valuable analytical tool for agnostic profiling of humoral immune response to a pathogen.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Humanos , Imunidade Humoral , Proteínas de Bactérias , Peptídeos/metabolismo
9.
bioRxiv ; 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37577562

RESUMO

We investigated a relatively underexplored component of the gut-immune axis by profiling the antibody response to gut phages using Phage Immunoprecipitation Sequencing (PhIP-Seq). To enhance this approach, we developed Dolphyn, a novel method that uses machine learning to select peptides from protein sets and compresses the proteome through epitope-stitching. Dolphyn improves the fraction of gut phage library peptides bound by antibodies from 10% to 31% in healthy individuals, while also reducing the number of synthesized peptides by 78%. In our study on gut phages, we discovered that the immune system develops antibodies to bacteria-infecting viruses in the human gut, particularly E.coli-infecting Myoviridae. Cost-effective PhIP-Seq libraries designed with Dolphyn enable the assessment of a wider range of proteins in a single experiment, thus facilitating the study of the gut-immune axis.

10.
Immunol Lett ; 259: 24-29, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37209913

RESUMO

Immunoglobulin (IG) genes, encoding B cell receptors (BCRs), are fundamental components of the mammalian immune system, which evolved to recognize the diverse antigenic universe present in nature. To handle these myriad inputs, BCRs are generated through combinatorial recombination of a set of highly polymorphic germline genes, resulting in a vast repertoire of antigen receptors that initiate responses to pathogens and regulate commensals. Following antigen recognition and B cell activation, memory B cells and plasma cells form, allowing for the development of anamnestic antibody (Ab) responses. How inherited variation in IG genes impacts host traits, disease susceptibility, and Ab recall responses is a topic of great interest. Here, we consider approaches to translate emerging knowledge about IG genetic diversity and expressed repertoires to inform our understanding of Ab function in health and disease etiology. As our understanding of IG genetics grows, so will our need for tools to decipher preferences for IG gene or allele usage in different contexts, to better understand antibody responses at the population level.


Assuntos
Imunoglobulinas , Receptores de Antígenos de Linfócitos B , Animais , Humanos , Imunoglobulinas/genética , Receptores de Antígenos de Linfócitos B/genética , Genes de Imunoglobulinas , Genótipo , Alelos , Mamíferos/genética
11.
Cell Rep Methods ; 3(8): 100566, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37671022

RESUMO

The increasing use of monoclonal antibodies (mAbs) in biology and medicine necessitates efficient methods for characterizing their binding epitopes. Here, we developed a high-throughput antibody footprinting method based on binding profiles. We used an antigen microarray to profile 23 human anti-influenza hemagglutinin (HA) mAbs using HA proteins of 43 human influenza strains isolated between 1918 and 2018. We showed that the mAb's binding profile can be used to characterize its influenza subtype specificity, binding region, and binding site. We present mAb-Patch-an epitope prediction method that is based on a mAb's binding profile and the 3D structure of its antigen. mAb-Patch was evaluated using four mAbs with known solved mAb-HA structures. mAb-Patch identifies over 67% of the true epitope when considering only 50-60 positions along the antigen. Our work provides proof of concept for utilizing antibody binding profiles to screen large panels of mAbs and to down-select antibodies for further functional studies.


Assuntos
Influenza Humana , Medicina , Humanos , Anticorpos Monoclonais , Epitopos , Sítios de Ligação
12.
Methods Mol Biol ; 2628: 505-533, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36781804

RESUMO

Antigenic peptides are commonly used in serological test settings such as enzyme-linked immunosorbent assays (ELISA) to determine reactive antibodies (ABs) from serum or plasma samples. The use of synthetic peptides provides advantages like lower production effort and easier incorporation of specific chemical modifications compared to full-length antigenic proteins. Multiplexed antibody (AB) profiling methods such as microarray technologies enable the simultaneous identification of multiple novel biomarkers for the use in early disease diagnostics, vaccine development, or monitoring of immune responses. Despite various benefits they still show major limitations which can be overcome with bead-based assay technologies like the multi-analyte profiling (xMAP) technology developed by Luminex. In this chapter we introduce our established workflow for AB profiling with a multiplexed bead-based peptide immunoassay. The workflow is based on copper-catalyzed click chemistry to immobilize designed synthetic peptides onto uniquely color-coded paramagnetic beads in an orientation-specific manner. The individual peptide-coupled beads can be distinguished by their unique emission spectra during readout in the xMAP instrument and therefore allow testing of up to 500 different antigenic peptides in one multiplexed reaction. The multistep process described in this chapter is divided into separate sections for peptide design, coupling of functionalized peptides to MagPlex beads via click chemistry, confirmation of successful peptide immobilization, processing of serum or plasma samples, or preferably purified IgG thereof, with the multiplexed bead-based peptide immunoassay and subsequent data export and analysis.


Assuntos
Anticorpos , Soro , Imunoensaio/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Soro/química , Peptídeos
13.
Microbiol Spectr ; 11(4): e0469022, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37278651

RESUMO

Patients with 2019 coronavirus disease (COVID-19) exhibit a broad spectrum of clinical presentations. A person's antimicrobial antibody profile, as partially shaped by past infection or vaccination, can reflect the immune system health that is critical to control and resolve the infection. We performed an explorative immunoproteomics study using microbial protein arrays displaying 318 full-length antigens from 77 viruses and 3 bacteria. We compared antimicrobial antibody profiles between 135 patients with mild COVID-19 disease and 215 patients with severe disease in 3 independent cohorts from Mexico and Italy. Severe disease patients were older with higher prevalence of comorbidities. We confirmed that severe disease patients elicited a stronger anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) response. We showed that antibodies against HCoV-229E and HcoV-NL63 but not against HcoV-HKU1 and HcoV-OC43 were also higher in those who had severe disease. We revealed that for a set of IgG and IgA antibodies targeting coronaviruses, herpesviruses, and other respiratory viruses, a subgroup of patients with the highest reactivity levels had a greater incidence of severe disease compared to those with mild disease across all three cohorts. On the contrary, fewer antibodies showed consistent greater prevalence in mild disease in all 3 cohorts. IMPORTANCE The clinical presentations of COVID-19 range from asymptomatic to critical illness that may lead to intensive care or even death. The health of the immune system, as partially shaped by past infections or vaccinations, is critical to control and resolve the infection. Using an innovative protein array platform, we surveyed antibodies against hundreds of full-length microbial antigens from 80 different viruses and bacteria in COVID-19 patients from different geographic regions with mild or severe disease. We not only confirmed the association of severe COVID-19 disease with higher reactivity of antibody responses to SARS-CoV-2 but also uncovered known and novel associations with antibody responses against herpesviruses and other respiratory viruses. Our study represents a significant step forward in understanding the factors contributing to COVID-19 disease severity. We also demonstrate the power of comprehensive antimicrobial antibody profiling in deciphering risk factors for severe COVID-19. We anticipate that our approach will have broad applications in infectious diseases.


Assuntos
COVID-19 , Coronavirus Humano 229E , Coronavirus Humano OC43 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Anticorpos Antivirais
14.
Methods Mol Biol ; 2628: 413-438, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36781800

RESUMO

Antibody (AB) testing or serotesting for reactive ABs against antigenic proteins is broadly used. Parallel examination of many antigens is of high interest to identify autoantibodies (AAB) or differential antigenic reactivities in many biological settings like allergy and infectious autoimmune, cancerous, or systemic disease. The resulting AAB profiles can be used for diagnosis, prognosis, and monitoring of such conditions. Protein microarrays have been used for AB profiling over the past decade but show some significant limitations which make them unsuitable for clinical applications. Alternative multiplexing platforms such as bead arrays were shown to provide a versatile tool for the confirmation and efficient analysis of high numbers of biological samples. Luminex' bead-based xMAP technology combines advantages such as multiplexing and lower demand for sample volume and at the same time overcomes the challenges of microarrays. It works faster, shows better antigen stability, is more reproducible, and allows the analysis of up to 500 analytes in one sample well. In this chapter we introduce our established workflow for the use of the xMAP technology for AB profiling including an overview of the method principle and protocols for the covalent immobilization of proteins to the MagPlex beads, confirmation of protein coupling, the execution of a multiplexed bead-based protein immunoassay, and subsequent data handling.


Assuntos
Antígenos , Soro , Testes Imunológicos , Autoanticorpos , Imunoensaio/métodos
15.
Methods Mol Biol ; 2414: 75-96, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34784033

RESUMO

High-density protein microarray is an established technology for characterizing host antibody profiles against entire pathogen proteomes. As one of the highest throughput technologies for antigen discovery, proteome microarrays are a translational research tool for identification of vaccine candidates and biomarkers of susceptibility or protection from microbial challenge. The application has been expanded in recent years due to increased availability of bacterial genomic sequences for a broader range of species and strain diversity. Panproteome microarrays now allow for fine characterization of antibody specificity and cross-reactivity that may be relevant to vaccine design and biomarker discovery, as well as a fuller understanding of factors underlying themes of bacterial evolution and host-pathogen interactions. In this chapter, we present a workflow for design of panproteome microarrays and demonstrate statistical analysis of panproteomic human antibody responses to bacterial vaccination and challenge. Focus is particularly drawn to the bioinformatics and statistical tools and providing nontrivial, real examples that may help foster hypotheses and rational design of panproteomic studies.


Assuntos
Formação de Anticorpos , Análise Serial de Proteínas , Vacinas Bacterianas , Humanos , Imunoglobulinas , Proteoma , Vacinação
16.
EBioMedicine ; 75: 103747, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34922324

RESUMO

BACKGROUND: Comprehensive characterization of exposures and immune responses to viral infections is critical to a basic understanding of human health and disease. We previously developed the VirScan system, a programmable phage-display technology for profiling antibody binding to a library of peptides designed to span the human virome. Previous VirScan analytical approaches did not carefully account for antibody cross-reactivity among sequences shared by related viruses or for the disproportionate representation of individual viruses in the library. METHODS: Here we present the AntiViral Antibody Response Deconvolution Algorithm (AVARDA), a multi-module software package for analyzing VirScan datasets. AVARDA provides a probabilistic assessment of infection with species-level resolution by considering sequence alignment of all library peptides to each other and to all human viruses. We employed AVARDA to analyze VirScan data from a cohort of encephalitis patients with either known viral infections or undiagnosed etiologies. We further assessed AVARDA's utility in associating viral infection with type 1 diabetes and lupus. FINDINGS: By comparing acute and convalescent sera, AVARDA successfully confirmed or detected encephalitis-associated responses to human herpesviruses 1, 3, 4, 5, and 6, improving the rate of diagnosing viral encephalitis in this cohort by 44%. AVARDA analyses of VirScan data from the type 1 diabetes and lupus cohorts implicated enterovirus and herpesvirus infections, respectively. INTERPRETATION: AVARDA, in combination with VirScan and other pan-pathogen serological techniques, is likely to find broad utility in the epidemiology and diagnosis of infectious diseases. FUNDING: This work was made possible by support from the National Institutes of Health (NIH), the US Army Research Office, the Singapore Infectious Diseases Initiative (SIDI), the Singapore Ministry of Health's National Medical Research Council (NMRC) and the Singapore National Research Foundation (NRF).


Assuntos
Viroma , Viroses , Anticorpos Antivirais , Antígenos Virais , Epitopos , Humanos , Estados Unidos , Viroses/diagnóstico
17.
ACS Infect Dis ; 8(4): 790-799, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35352558

RESUMO

Recent efforts in understanding the course and severity of SARS-CoV-2 infections have highlighted both potentially beneficial and detrimental effects of cross-reactive antibodies derived from memory immunity. Specifically, due to a significant degree of sequence similarity between SARS-CoV-2 and other members of the coronavirus family, memory B-cells that emerged from previous infections with endemic human coronaviruses (HCoVs) could be reactivated upon encountering the newly emerged SARS-CoV-2, thus prompting the production of cross-reactive antibodies. Determining the affinity and concentration of these potentially cross-reactive antibodies to the new SARS-CoV-2 antigens is therefore particularly important when assessing both existing immunity against common HCoVs and adverse effects like antibody-dependent enhancement (ADE) in COVID-19. However, these two fundamental parameters cannot easily be disentangled by surface-based assays like enzyme-linked immunosorbent assays (ELISAs), which are routinely used to assess cross-reactivity. Here, we have used microfluidic antibody affinity profiling (MAAP) to quantitatively evaluate the humoral immune response in COVID-19 convalescent patients by determining both antibody affinity and concentration against spike antigens of SARS-CoV-2 directly in nine convalescent COVID-19 patient and three pre-pandemic sera that were seropositive for common HCoVs. All 12 sera contained low concentrations of high-affinity antibodies against spike antigens of HCoV-NL63 and HCoV-HKU1, indicative of past exposure to these pathogens, while the affinity against the SARS-CoV-2 spike protein was lower. These results suggest that cross-reactivity as a consequence of memory reactivation upon an acute SARS-CoV-2 infection may not be a significant factor in generating immunity against SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Afinidade de Anticorpos , Humanos , Microfluídica , Glicoproteína da Espícula de Coronavírus
18.
Cell Rep ; 39(13): 111020, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35738278

RESUMO

While there have been extensive analyses characterizing cellular and humoral responses across the severity spectrum in COVID-19, outcome predictors within severe COVID-19 remain less comprehensively elucidated. Furthermore, properties of antibodies (Abs) directed against viral antigens beyond spike and their associations with disease outcomes remain poorly defined. We perform deep molecular profiling of Abs directed against a wide range of antigenic specificities in severe COVID-19 patients. The profiles included canonical (spike [S], receptor-binding domain [RBD], and nucleocapsid [N]) and non-canonical (orf3a, orf8, nsp3, nsp13, and membrane [M]) antigenic specificities. Notably, multivariate Ab profiles directed against canonical or non-canonical antigens are equally discriminative of survival in severe COVID-19. Intriguingly, pre-pandemic healthy controls have cross-reactive Abs directed against nsp13, a protein conserved across coronaviruses. Consistent with these findings, a model built on Ab profiles for endemic coronavirus antigens also predicts COVID-19 outcome. Our results suggest the importance of studying Abs targeting non-canonical severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and endemic coronavirus antigens in COVID-19.


Assuntos
COVID-19 , Anticorpos Antivirais , Humanos , Pandemias , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
19.
Front Immunol ; 13: 1042741, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591224

RESUMO

Background: Identifying immune processes required for liver-stage sterilizing immunity to malaria remains an open problem. The IMRAS trial comprised 5x immunizations with radiation-attenuated sporozoites resulting in 55% protection from subsequent challenge. Methods: To identify correlates of vaccination and protection, we performed detailed systems immunology longitudinal profiling of the entire trial time course including whole blood transcriptomics, detailed PBMC cell phenotyping and serum antigen array profiling of 11 IMRAS radiation-attenuated sporozoite (RAS) vaccinees at up to 21 timepoints each. Results: RAS vaccination induced serum antibody responses to CSP, TRAP, and AMA1 in all vaccinees. We observed large numbers of differentially expressed genes associated with vaccination response and protection, with distinctly differing transcriptome responses elicited after each immunization. These included inflammatory and proliferative responses, as well as increased abundance of monocyte and DC subsets after each immunization. Increases in Vδ2 γδ; T cells and MAIT cells were observed in response to immunization over the course of study, and CD1c+ CD40+ DC abundance was significantly associated with protection. Interferon responses strongly differed between protected and non-protected individuals with high interferon responses after the 1st immunization, but not the 2nd-5th. Blood transcriptional interferon responses were correlated with abundances of different circulating classical and non-classical monocyte populations. Conclusions: This study has revealed multiple coordinated immunological processes induced by vaccination and associated with protection. Our work represents the most detailed immunological profiling of a RAS vaccine trial performed to date and will guide the design and interpretation of future malaria vaccine trials.


Assuntos
Malária , Esporozoítos , Animais , Humanos , Linfócitos T CD8-Positivos , Imunidade , Interferons , Leucócitos Mononucleares , Malária/prevenção & controle , Vacinação/métodos , Ensaios Clínicos como Assunto
20.
Front Immunol ; 12: 740395, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512672

RESUMO

Introduction: Low HIV viral load is associated with delayed disease progression and reduced HIV transmission. HIV controllers suppress viral load to low levels in the absence of antiretroviral treatment (ART). We used an antibody profiling system, VirScan, to compare antibody reactivity and specificity in HIV controllers, non-controllers with treatment-induced viral suppression, and viremic non-controllers. Methods: The VirScan library contains 3,384 phage-displayed peptides spanning the HIV proteome. Antibody reactivity to these peptides was measured in plasma from a Discovery Cohort that included 13 elite controllers, 27 viremic controllers, 12 viremic non-controllers, and 21 non-controllers who were virally suppressed on ART. Antibody reactivity to selected peptides was also assessed in an independent cohort of 29 elite controllers and 37 non-controllers who were virally suppressed on ART (Validation Cohort) and in a longitudinal cohort of non-controllers. Results: In the Discovery Cohort, 62 peptides were preferentially targeted in HIV controllers compared to non-controllers who were virally suppressed on ART. These specificities were not significantly different when comparing controllers versus viremic non-controllers. Aggregate reactivity to these peptides was also high in elite controllers from the independent Validation Cohort. The 62 peptides formed seven clusters of homologous epitopes in env, gag, integrase, and vpu. Reactivity to one of these clusters located in gag p17 was inversely correlated with viral load set point in an independent cohort of non-controllers. Conclusions: Antibody reactivity was low in non-controllers suppressed on ART, but remained high in viremic controllers despite viral suppression. Antibodies in controllers and viremic non-controllers were directed against epitopes in diverse HIV proteins; higher reactivity against p17 peptides was associated with lower viral load set point. Further studies are needed to determine if these antibodies play a role in regulation of HIV viral load.


Assuntos
Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Paciente HIV Positivo não Progressor , HIV-1/fisiologia , Adulto , Antirretrovirais/uso terapêutico , Mapeamento de Epitopos , Epitopos/genética , Epitopos/imunologia , Feminino , Antígenos HIV/genética , Antígenos HIV/imunologia , Infecções por HIV/tratamento farmacológico , Humanos , Masculino , Biblioteca de Peptídeos , Carga Viral , Adulto Jovem , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA