Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.374
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(2): 384-403.e21, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33450205

RESUMO

Many oncogenic insults deregulate RNA splicing, often leading to hypersensitivity of tumors to spliceosome-targeted therapies (STTs). However, the mechanisms by which STTs selectively kill cancers remain largely unknown. Herein, we discover that mis-spliced RNA itself is a molecular trigger for tumor killing through viral mimicry. In MYC-driven triple-negative breast cancer, STTs cause widespread cytoplasmic accumulation of mis-spliced mRNAs, many of which form double-stranded structures. Double-stranded RNA (dsRNA)-binding proteins recognize these endogenous dsRNAs, triggering antiviral signaling and extrinsic apoptosis. In immune-competent models of breast cancer, STTs cause tumor cell-intrinsic antiviral signaling, downstream adaptive immune signaling, and tumor cell death. Furthermore, RNA mis-splicing in human breast cancers correlates with innate and adaptive immune signatures, especially in MYC-amplified tumors that are typically immune cold. These findings indicate that dsRNA-sensing pathways respond to global aberrations of RNA splicing in cancer and provoke the hypothesis that STTs may provide unexplored strategies to activate anti-tumor immune pathways.


Assuntos
Antivirais/farmacologia , Imunidade/efeitos dos fármacos , Spliceossomos/metabolismo , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Imunidade Adaptativa/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Feminino , Amplificação de Genes/efeitos dos fármacos , Humanos , Íntrons/genética , Camundongos , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas c-myc/metabolismo , Splicing de RNA/efeitos dos fármacos , Splicing de RNA/genética , RNA de Cadeia Dupla/metabolismo , Transdução de Sinais/efeitos dos fármacos , Spliceossomos/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/genética
2.
Immunity ; 57(7): 1514-1532.e15, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38788712

RESUMO

Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) functions as a critical stress sentinel that coordinates cell survival, inflammation, and immunogenic cell death (ICD). Although the catalytic function of RIPK1 is required to trigger cell death, its non-catalytic scaffold function mediates strong pro-survival signaling. Accordingly, cancer cells can hijack RIPK1 to block necroptosis and evade immune detection. We generated a small-molecule proteolysis-targeting chimera (PROTAC) that selectively degraded human and murine RIPK1. PROTAC-mediated depletion of RIPK1 deregulated TNFR1 and TLR3/4 signaling hubs, accentuating the output of NF-κB, MAPK, and IFN signaling. Additionally, RIPK1 degradation simultaneously promoted RIPK3 activation and necroptosis induction. We further demonstrated that RIPK1 degradation enhanced the immunostimulatory effects of radio- and immunotherapy by sensitizing cancer cells to treatment-induced TNF and interferons. This promoted ICD, antitumor immunity, and durable treatment responses. Consequently, targeting RIPK1 by PROTACs emerges as a promising approach to overcome radio- or immunotherapy resistance and enhance anticancer therapies.


Assuntos
Morte Celular Imunogênica , Proteólise , Proteína Serina-Treonina Quinases de Interação com Receptores , Transdução de Sinais , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Humanos , Animais , Camundongos , Proteólise/efeitos dos fármacos , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Morte Celular Imunogênica/efeitos dos fármacos , Necroptose/efeitos dos fármacos , Necroptose/imunologia , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Camundongos Endogâmicos C57BL , Antineoplásicos/farmacologia , Imunoterapia/métodos
3.
Cell ; 175(2): 429-441.e16, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30245008

RESUMO

Targeting autophagy in cancer cells and in the tumor microenvironment are current goals of cancer therapy. However, components of canonical autophagy play roles in other biological processes, adding complexity to this goal. One such alternative function of autophagy proteins is LC3-associated phagocytosis (LAP), which functions in phagosome maturation and subsequent signaling events. Here, we show that impairment of LAP in the myeloid compartment, rather than canonical autophagy, induces control of tumor growth by tumor-associated macrophages (TAM) upon phagocytosis of dying tumor cells. Single-cell RNA sequencing (RNA-seq) analysis revealed that defects in LAP induce pro-inflammatory gene expression and trigger STING-mediated type I interferon responses in TAM. We found that the anti-tumor effects of LAP impairment require tumor-infiltrating T cells, dependent upon STING and the type I interferon response. Therefore, autophagy proteins in the myeloid cells of the tumor microenvironment contribute to immune suppression of T lymphocytes by effecting LAP.


Assuntos
Tolerância Imunológica/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Fagocitose/fisiologia , Animais , Autofagia/imunologia , Linhagem Celular , Interações Hospedeiro-Patógeno , Humanos , Tolerância Imunológica/imunologia , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Células Mieloides/metabolismo , Fagossomos/fisiologia , Linfócitos T/metabolismo , Microambiente Tumoral/fisiologia
4.
Mol Cell ; 82(1): 75-89.e9, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34942120

RESUMO

Circular RNAs (circRNAs) are widely expressed in eukaryotes and are regulated in many biological processes. Although several studies indicate their activity as microRNA (miRNA) and protein sponges, little is known about their ability to directly control mRNA homeostasis. We show that the widely expressed circZNF609 directly interacts with several mRNAs and increases their stability and/or translation by favoring the recruitment of the RNA-binding protein ELAVL1. Particularly, the interaction with CKAP5 mRNA, which interestingly overlaps the back-splicing junction, enhances CKAP5 translation, regulating microtubule function in cancer cells and sustaining cell-cycle progression. Finally, we show that circZNF609 downregulation increases the sensitivity of several cancer cell lines to different microtubule-targeting chemotherapeutic drugs and that locked nucleic acid (LNA) protectors against the pairing region on circZNF609 phenocopy such effects. These data set an example of how the small effects tuned by circZNF609/CKAP5 mRNA interaction might have a potent output in tumor growth and drug response.


Assuntos
Carcinogênese , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neoplasias/metabolismo , RNA Circular/metabolismo , RNA Mensageiro/metabolismo , Animais , Antineoplásicos/farmacologia , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células K562 , Masculino , Camundongos Nus , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/efeitos dos fármacos , Microtúbulos/genética , Microtúbulos/patologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , RNA Circular/genética , RNA Mensageiro/genética , Transdução de Sinais , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Trends Biochem Sci ; 49(7): 611-621, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38677920

RESUMO

YTHDF proteins are main cytoplasmic 'reader' proteins of RNA N6-methyladenosine (m6A) methylation in mammals. They are largely responsible for m6A-mediated regulation in the cell cytosol by controlling both mRNA translation and degradation. Recent functional and mechanistic investigations of the YTHDF proteins revealed that these proteins have different functions to enable versatile regulation of the epitranscriptome. Their divergent functions largely originate from their different amino acid sequences in the low-complexity N termini. Consequently, they have different phase separation propensities and possess distinct post-translational modifications (PTMs). Different PTMs, subcellular localizations, and competition among partner proteins have emerged as three major mechanisms that control the functions of these YTHDF proteins. We also summarize recent progress on critical roles of these YTHDF proteins in anticancer immunity and the potential for targeting these proteins for developing new anticancer therapies.


Assuntos
Adenosina , Proteínas de Ligação a RNA , Humanos , Animais , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Adenosina/metabolismo , Adenosina/análogos & derivados , Processamento de Proteína Pós-Traducional , RNA/metabolismo , Metilação , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia
6.
Proc Natl Acad Sci U S A ; 121(25): e2316615121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38861602

RESUMO

Many cancer-driving protein targets remain undruggable due to a lack of binding molecular scaffolds. In this regard, octahedral metal complexes with unique and versatile three-dimensional structures have rarely been explored as inhibitors of undruggable protein targets. Here, we describe antitumor iridium(III) pyridinium-N-heterocyclic carbene complex 1a, which profoundly reduces the viability of lung and breast cancer cells as well as cancer patient-derived organoids at low micromolar concentrations. Compound 1a effectively inhibits the growth of non-small-cell lung cancer and triple-negative breast cancer xenograft tumors, impedes the metastatic spread of breast cancer cells, and can be modified into an antibody-drug conjugate payload to achieve precise tumor delivery in mice. Identified by thermal proteome profiling, an important molecular target of 1a in cellulo is Girdin, a multifunctional adaptor protein that is overexpressed in cancer cells and unequivocally serves as a signaling hub for multiple pivotal oncogenic pathways. However, specific small-molecule inhibitors of Girdin have not yet been developed. Notably, 1a exhibits high binding affinity to Girdin with a Kd of 1.3 µM and targets the Girdin-linked EGFR/AKT/mTOR/STAT3 cancer-driving pathway, inhibiting cancer cell proliferation and metastatic activity. Our study reveals a potent Girdin-targeting anticancer compound and demonstrates that octahedral metal complexes constitute an untapped library of small-molecule inhibitors that can fit into the ligand-binding pockets of key oncoproteins.


Assuntos
Antineoplásicos , Irídio , Metano , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Irídio/química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Metano/análogos & derivados , Metano/química , Metano/farmacologia , Proteínas dos Microfilamentos/metabolismo , Metástase Neoplásica , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino
7.
J Cell Sci ; 137(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38940347

RESUMO

Some chemotherapy drugs modulate the formation of stress granules (SGs), which are RNA-containing cytoplasmic foci contributing to stress response pathways. How SGs mechanistically contribute to pro-survival or pro-apoptotic functions must be better defined. The chemotherapy drug lomustine promotes SG formation by activating the stress-sensing eIF2α kinase HRI (encoded by the EIF2AK1 gene). Here, we applied a DNA microarray-based transcriptome analysis to determine the genes modulated by lomustine-induced stress and suggest roles for SGs in this process. We found that the expression of the pro-apoptotic EGR1 gene was specifically regulated in cells upon lomustine treatment. The appearance of EGR1-encoding mRNA in SGs correlated with a decrease in EGR1 mRNA translation. Specifically, EGR1 mRNA was sequestered to SGs upon lomustine treatment, probably preventing its ribosome translation and consequently limiting the degree of apoptosis. Our data support the model where SGs can selectively sequester specific mRNAs in a stress-specific manner, modulate their availability for translation, and thus determine the fate of a stressed cell.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce , Lomustina , RNA Mensageiro , Humanos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Lomustina/farmacologia , Grânulos de Estresse/metabolismo , Grânulos de Estresse/genética , Apoptose/efeitos dos fármacos , Antineoplásicos Alquilantes/farmacologia
8.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39101498

RESUMO

With the ever-increasing number of artificial intelligence (AI) systems, mitigating risks associated with their use has become one of the most urgent scientific and societal issues. To this end, the European Union passed the EU AI Act, proposing solution strategies that can be summarized under the umbrella term trustworthiness. In anti-cancer drug sensitivity prediction, machine learning (ML) methods are developed for application in medical decision support systems, which require an extraordinary level of trustworthiness. This review offers an overview of the ML landscape of methods for anti-cancer drug sensitivity prediction, including a brief introduction to the four major ML realms (supervised, unsupervised, semi-supervised, and reinforcement learning). In particular, we address the question to what extent trustworthiness-related properties, more specifically, interpretability and reliability, have been incorporated into anti-cancer drug sensitivity prediction methods over the previous decade. In total, we analyzed 36 papers with approaches for anti-cancer drug sensitivity prediction. Our results indicate that the need for reliability has hardly been addressed so far. Interpretability, on the other hand, has often been considered for model development. However, the concept is rather used intuitively, lacking clear definitions. Thus, we propose an easily extensible taxonomy for interpretability, unifying all prevalent connotations explicitly or implicitly used within the field.


Assuntos
Antineoplásicos , Aprendizado de Máquina , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Reprodutibilidade dos Testes , Inquéritos e Questionários , Resistencia a Medicamentos Antineoplásicos
9.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38725157

RESUMO

Cancer, recognized as a primary cause of death worldwide, has profound health implications and incurs a substantial social burden. Numerous efforts have been made to develop cancer treatments, among which anticancer peptides (ACPs) are garnering recognition for their potential applications. While ACP screening is time-consuming and costly, in silico prediction tools provide a way to overcome these challenges. Herein, we present a deep learning model designed to screen ACPs using peptide sequences only. A contrastive learning technique was applied to enhance model performance, yielding better results than a model trained solely on binary classification loss. Furthermore, two independent encoders were employed as a replacement for data augmentation, a technique commonly used in contrastive learning. Our model achieved superior performance on five of six benchmark datasets against previous state-of-the-art models. As prediction tools advance, the potential in peptide-based cancer therapeutics increases, promising a brighter future for oncology research and patient care.


Assuntos
Antineoplásicos , Aprendizado Profundo , Peptídeos , Peptídeos/química , Peptídeos/uso terapêutico , Humanos , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Neoplasias/tratamento farmacológico , Biologia Computacional/métodos , Aprendizado de Máquina , Algoritmos
10.
Mol Cell ; 69(6): 1046-1061.e5, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29547717

RESUMO

A single mutagen can generate multiple different types of DNA lesions. How different repair pathways cooperate in complex DNA lesions, however, remains largely unclear. Here we measured, clustered, and modeled the kinetics of recruitment and dissociation of 70 DNA repair proteins to laser-induced DNA damage sites in HeLa cells. The precise timescale of protein recruitment reveals that error-prone translesion polymerases are considerably delayed compared to error-free polymerases. We show that this is ensured by the delayed recruitment of RAD18 to double-strand break sites. The time benefit of error-free polymerases disappears when PARP inhibition significantly delays PCNA recruitment. Moreover, removal of PCNA from complex DNA damage sites correlates with RPA loading during 5'-DNA end resection. Our systematic study of the dynamics of DNA repair proteins in complex DNA lesions reveals the multifaceted coordination between the repair pathways and provides a kinetics-based resource to study genomic instability and anticancer drug impact.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Neoplasias do Colo do Útero/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Feminino , Instabilidade Genômica , Células HeLa , Humanos , Cinética , Modelos Genéticos , Ftalazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
11.
Proc Natl Acad Sci U S A ; 120(34): e2218483120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579177

RESUMO

We designed and carried out a high-throughput screen for compounds that trap topoisomerase III beta (TOP3B poisons) by developing a Comparative Cellular Cytotoxicity Screen. We found a bisacridine compound NSC690634 and a thiacyanine compound NSC96932 that preferentially sensitize cell lines expressing TOP3B, indicating that they target TOP3B. These compounds trap TOP3B cleavage complex (TOP3Bcc) in cells and in vitro and predominately act on RNA, leading to high levels of RNA-TOP3Bccs. NSC690634 also leads to enhanced R-loops in a TOP3B-dependent manner. Preliminary structural activity studies show that the lengths of linkers between the two aromatic moieties in each compound are critical; altering the linker length completely abolishes the trapping of TOP3Bccs. Both of our lead compounds share a similar structural motif, which can serve as a base for further modification. They may also serve in anticancer, antiviral, and/or basic research applications.


Assuntos
DNA Topoisomerases Tipo I , Inibidores da Topoisomerase I , Linhagem Celular , DNA Topoisomerases Tipo I/metabolismo , RNA , Inibidores da Topoisomerase I/química
12.
J Biol Chem ; : 107615, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39089584

RESUMO

NXP900 is a selective and potent SRC family kinase (SFK) inhibitor, currently being dosed in a phase 1 clinical trial, that locks SRC in the "closed" conformation, thereby inhibiting both kinase-dependent catalytic activity and kinase-independent functions. In contrast, several multi-targeted kinase inhibitors that inhibit SRC, including dasatinib and bosutinib, bind their target in the active "open" conformation, allowing SRC and other SFKs to act as a scaffold to promote tumorigenesis through non-catalytic functions. NXP900 exhibits a unique target selectivity profile with sub-nanomolar activity against SFK members over other kinases. This results in highly potent and specific SFK pathway inhibition. Here, we demonstrate that esophageal squamous cell carcinomas (ESCC) and head and neck squamous cell carcinomas (HNSCC) are exquisitely sensitive to NXP900 treatment in cell culture and in vivo, and we identify a patient population that could benefit from treatment with NXP900.

13.
J Biol Chem ; 300(6): 107363, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735475

RESUMO

Cryptophycins are microtubule-targeting agents (MTAs) that belong to the most potent antimitotic compounds known to date; however, their exact molecular mechanism of action remains unclear. Here, we present the 2.2 Å resolution X-ray crystal structure of a potent cryptophycin derivative bound to the αß-tubulin heterodimer. The structure addresses conformational issues present in a previous 3.3 Å resolution cryo-electron microscopy structure of cryptophycin-52 bound to the maytansine site of ß-tubulin. It further provides atomic details on interactions of cryptophycins, which had not been described previously, including ones that are in line with structure-activity relationship studies. Interestingly, we discovered a second cryptophycin-binding site that involves the T5-loop of ß-tubulin, a critical secondary structure element involved in the exchange of the guanosine nucleotide and in the formation of longitudinal tubulin contacts in microtubules. Cryptophycins are the first natural ligands found to bind to this new "ßT5-loop site" that bridges the maytansine and vinca sites. Our results offer unique avenues to rationally design novel MTAs with the capacity to modulate T5-loop dynamics and to simultaneously engage multiple ß-tubulin binding sites.


Assuntos
Maitansina , Tubulina (Proteína) , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Maitansina/química , Maitansina/análogos & derivados , Humanos , Cristalografia por Raios X , Sítios de Ligação , Microtúbulos/metabolismo , Microtúbulos/química , Alcaloides de Vinca/química , Alcaloides de Vinca/metabolismo
14.
J Biol Chem ; 300(3): 105680, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272230

RESUMO

Migration and invasion enhancer 1 (MIEN1) overexpression characterizes several cancers and facilitates cancer cell migration and invasion. Leveraging conserved immunoreceptor tyrosine-based activation motif and prenylation motifs within MIEN1, we identified potent anticancer peptides. Among them, bioactive peptides LA3IK and RP-7 induced pronounced transcriptomic and protein expression changes at sub-IC50 concentrations. The peptides effectively inhibited genes and proteins driving cancer cell migration, invasion, and epithelial-mesenchymal transition pathways, concurrently suppressing epidermal growth factor-induced nuclear factor kappa B nuclear translocation in metastatic breast cancer cells. Specifically, peptides targeted the same signal transduction pathway initiated by MIEN1. Molecular docking and CD spectra indicated the formation of MIEN1-peptide complexes. The third-positioned isoleucine in LA3IK and CVIL motif in RP-7 were crucial for inhibiting breast cancer cell migration. This is evident from the limited migration inhibition observed when MDA-MB-231 cells were treated with scrambled peptides LA3IK SCR and RP-7 SCR. Additionally, LA3IK and RP-7 effectively suppressed tumor growth in an orthotopic breast cancer model. Notably, mice tolerated high intraperitoneal (ip) peptide doses of 90 mg/Kg well, surpassing significantly lower doses of 5 mg/Kg intravenously (iv) and 30 mg/Kg intraperitoneally (ip) used in both in vivo pharmacokinetic studies and orthotopic mouse model assays. D-isomers of LA3IK and RP-7 showed enhanced anticancer activity compared to their L-isomers. D-LA3IK remained stable in mouse plasma for 24 h with 75% remaining, exhibiting superior pharmacokinetic properties over D/L-RP-7. In summary, our findings mark the first report of short peptides based on MIEN1 protein sequence capable of inhibiting cancer signaling pathways, effectively impeding cancer progression both in vitro and in vivo.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Neoplasias , Animais , Camundongos , Movimento Celular/genética , Proliferação de Células , Transição Epitelial-Mesenquimal , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Humanos , Linhagem Celular , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-39060878

RESUMO

Developing anticancer drugs from preclinical to clinical takes approximately a decade in a cutting-edge biomedical lab and still 97% of most fail at clinical trials. Cell line usage is critical in expediting the advancement of anticancer therapies. Yet developing appropriate cell lines has been challenging and overcoming these obstacles whilst implementing a systematic approach of utilizing 3D models that recapitulate the tumour microenvironment is prudent. Using a robust and continuous supply of cell lines representing all ethnic groups from all locales is necessary to capture the evolving tumour landscape in culture. Next, the conversion of these models to systems on a chip that can by way of high throughput cytotoxic assays identify drug leads for clinical trials should fast-track drug development while markedly improving success rates. In this review, we describe the challenges that have hindered the progression of cell line models over seven decades and methods to overcome this. We outline the gaps in breast and prostate cancer cell line pathology and racial representation alongside their involvement in relevant drug development.

16.
Artigo em Inglês | MEDLINE | ID: mdl-39008152

RESUMO

Cancer is a significant global health concern associated with multiple distinct factors, including microbial and viral infections. Numerous studies have elucidated the role of microorganisms, such as Helicobacter pylori (H. pylori), as well as viruses for example human papillomavirus (HPV), hepatitis B virus (HBV), and hepatitis C virus (HCV), in the development of human malignancies. Substantial attention has been focused on the treatment of these microorganism- and virus-associated cancers, with promising outcomes observed in studies employing peptide-based therapies. The current paper provides an overview of microbe- and virus-induced cancers and their underlying molecular mechanisms. We discuss an assortment of peptide-based therapies which are currently being developed, including tumor-targeting peptides and microbial/viral peptide-based vaccines. We describe the major technological advancements that have been made in the design, screening, and delivery of peptides as anticancer agents. The primary focus of the current review is to provide insight into the latest research and development in this field and to provide a realistic glimpse into the future of peptide-based therapies for microbe- and virus-induced neoplasms.

17.
Cancer Metastasis Rev ; 43(1): 87-113, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37789138

RESUMO

Cancer cell plasticity plays a crucial role in tumor initiation, progression, and metastasis and is implicated in the multiple cancer defense mechanisms associated with therapy resistance and therapy evasion. Cancer resistance represents one of the significant obstacles in the clinical management of cancer. Some reversal chemosensitizing agents have been developed to resolve this serious clinical problem, but they have not yet been proven applicable in oncological practice. Activated nuclear factor kappa B (NF-κB) is a frequently observed biomarker in chemoresistant breast cancer (BC). Therefore, it denotes an attractive cellular target to mitigate cancer resistance. We summarize that flavonoids represent an essential class of phytochemicals that act as significant regulators of NF-κB signaling and negatively affect the fundamental cellular processes contributing to acquired cell plasticity and drug resistance. In this regard, flavokawain A, icariin, alpinetin, genistein, wogonin, apigenin, oroxylin A, xanthohumol, EGCG, hesperidin, naringenin, orientin, luteolin, delphinidin, fisetin, norwogonin, curcumin, cardamonin, methyl gallate and catechin-3-O-gallate, ampelopsin, puerarin, hyperoside, baicalein, paratocarpin E, and kaempferol and also synthetic flavonoids such as LFG-500 and 5,3'-dihydroxy-3,6,7,8,4'-pentamethoxyflavone have been reported to specifically interfere with the NF-κB pathway with complex signaling consequences in BC cells and could be potentially crucial in re-sensitizing unresponsive BC cases. The targeting NF-κB by above-mentioned flavonoids includes the modification of tumor microenvironment and epithelial-mesenchymal transition, growth factor receptor regulations, and modulations of specific pathways such as PI3K/AKT, MAP kinase/ERK, and Janus kinase/signal transduction in BC cells. Besides that, NF-κB signaling in BC cells modulated by flavonoids has also involved the regulation of ATP-binding cassette transporters, apoptosis, autophagy, cell cycle, and changes in the activity of cancer stem cells, oncogenes, or controlling of gene repair. The evaluation of conventional therapies in combination with plasticity-regulating/sensitizing agents offers new opportunities to make significant progress towards a complete cure for cancer.


Assuntos
Neoplasias da Mama , NF-kappa B , Humanos , Feminino , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Plasticidade Celular , Transdução de Sinais , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral
18.
EMBO J ; 40(11): e99692, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33856059

RESUMO

Chemical inhibitors of the deubiquitinase USP7 are currently being developed as anticancer agents based on their capacity to stabilize P53. Regardless of this activity, USP7 inhibitors also generate DNA damage in a p53-independent manner. However, the mechanism of this genotoxicity and its contribution to the anticancer effects of USP7 inhibitors are still under debate. Here we show that, surprisingly, even if USP7 inhibitors stop DNA replication, they also induce a widespread activation of CDK1 throughout the cell cycle, which leads to DNA damage and is toxic for mammalian cells. In addition, USP7 interacts with the phosphatase PP2A and supports its active localization in the cytoplasm. Accordingly, inhibition of USP7 or PP2A triggers very similar changes of the phosphoproteome, including a widespread increase in the phosphorylation of CDK1 targets. Importantly, the toxicity of USP7 inhibitors is alleviated by lowering CDK1 activity or by chemical activation of PP2A. Our work reveals that USP7 limits CDK1 activity at all cell cycle stages, providing a novel mechanism that explains the toxicity of USP7 inhibitors through untimely activation of CDK1.


Assuntos
Proteína Quinase CDC2/metabolismo , Ciclo Celular , Peptidase 7 Específica de Ubiquitina/metabolismo , Animais , Células Cultivadas , Dano ao DNA , Células HCT116 , Humanos , Camundongos , Células NIH 3T3 , Inibidores de Proteases/toxicidade , Proteína Fosfatase 2/metabolismo , Transporte Proteico , Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores
19.
Genes Cells ; 29(1): 52-62, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37963646

RESUMO

Glyoxalase I (GLO I), a major enzyme involved in the detoxification of the anaerobic glycolytic byproduct methylglyoxal, is highly expressed in various tumors, and is regarded as a promising target for cancer therapy. We recently reported that piceatannol potently inhibits human GLO I and induces the death of GLO I-dependent cancer cells. Pyruvate kinase M2 (PKM2) is also a potential therapeutic target for cancer treatment, so we evaluated the combined anticancer efficacy of piceatannol plus low-dose shikonin, a potent and specific plant-derived PKM2 inhibitor, in two GLO I-dependent cancer cell lines, HL-60 human myeloid leukemia cells and NCI-H522 human non-small-cell lung cancer cells. Combined treatment with piceatannol and low-dose shikonin for 48 h synergistically reduced cell viability, enhanced apoptosis rate, and increased extracellular methylglyoxal accumulation compared to single-agent treatment, but did not alter PKM1, PKM2, or GLO I protein expression. Taken together, these results indicate that concomitant use of low-dose shikonin potentiates piceatannol-induced apoptosis of GLO I-dependent cancer cells by augmenting methylglyoxal accumulation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Lactoilglutationa Liase , Neoplasias Pulmonares , Humanos , Aldeído Pirúvico , Apoptose , Piruvato Quinase/metabolismo , Linhagem Celular Tumoral
20.
Brief Bioinform ; 24(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36961310

RESUMO

Prediction of therapy response has been a major challenge in cancer precision medicine due to the extensive tumor heterogeneity. Recently, several deep learning methods have been developed to predict drug response by utilizing various omics data. Most of them train models by using the drug-response screening data generated from cell lines and then use these models to predict response in cancer patient data. In this study, we focus on and evaluate deep learning methods using transcriptome data for the long-standing question of personalized drug-response prediction. We developed an embedding-based approach for drug-response prediction and benchmarked similar methods for their performance. For all methods, we used pretreatment transcriptome data to train models and then conducted a comprehensive evaluation and comparison of the models using cross-panels, cross-datasets and target genes. We further validated the methods using three independent datasets assessing multiple compounds for their predictive capability of drug response, survival outcome and cell line status. As a result, the methods building on gene embeddings had an overall competitive performance with reduced overfitting when we applied evaluation parameters for model fitting as well as the correlation with clinical outcomes in the validation data. We further developed an ensemble model to combine the results from the three most competitive methods for an overall prediction. Finally, we developed DrVAEN (https://bioinfo.uth.edu/drvaen), a user-friendly and easy-accessible web-server that hosts all these methods for drug-response prediction and model comparison for broad use in cancer research, method evaluation and drug development.


Assuntos
Benchmarking , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Medicina de Precisão/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA