RESUMO
Magneto-optical effects (MOE), interfacing the fundamental interplay between magnetism and light, have served as a powerful probe for magnetic order, band topology, and valley index. Here, based on multiferroic and topological bilayer antiferromagnets (AFMs), we propose a layer control of MOE (L-MOE), which is created and annihilated by layer-stacking or an electric field effect. The key character of L-MOE is the sign-reversible response controlled by ferroelectric polarization, the Néel vector, or the electric field direction. Moreover, the sign-reversible L-MOE can be quantized in topologically insulating AFMs. We reveal that the switchable L-MOE originates from the combined contributions of spin-conserving and spin-flip interband transitions in spin-valley splitting AFMs, a phenomenon not observed in conventional AFMs. Our findings bridge the ancient MOE to the emergent realms of layertronics, valleytronics, and multiferroics and may hold immense potential in these fields.
RESUMO
We study current-induced switching of the Néel vector in CoO/Pt bilayers to understand the underlying antiferromagnetic switching mechanism. Surprisingly, we find that for ultrathin CoO/Pt bilayers electrical pulses along the same path can lead to an increase or decrease of the spin Hall magnetoresistance signal, depending on the current density of the pulse. By comparing these results to XMLD-PEEM imaging of the antiferromagnetic domain structure before and after the application of current pulses, we reveal the details of the reorientation of the Néel vector in ultrathin CoO(4 nm). This allows us to understand how opposite resistance changes can result from a thermomagnetoelastic switching mechanism. Importantly, our spatially resolved imaging shows that regions where the current pulses are applied and regions further away exhibit different switched spin structures, which can be explained by a spin-orbit torque-based switching mechanism that can dominate in very thin films.
RESUMO
We used a surface acoustic wave (SAW) cavity resonator to study the coupling of acoustic magnons in a synthetic antiferromagnet (SAF) and phonons carried by SAWs. The SAF is composed of a CoFeB/Ru/CoFeB trilayer, and the scattering matrix of the SAW resonator is studied to assess the coupling. We find that the spectral line width of the SAW resonator is modulated when the frequency of the excited magnons approaches the SAW resonance frequency. Such a change in the spectral linewidth can be well reproduced using macrospin-like model calculations. From the model analyses, we estimate the magnon-phonon coupling strength to be â¼9.9 MHz at a SAW resonance frequency of 1.8 GHz: the corresponding magnomechanical cooperativity is â¼0.66. As the spectral shape hardly changes in a CoFeB single-layer reference sample, these results show that SAF provides an ideal platform to study magnon-phonon coupling in an SAW cavity resonator.
RESUMO
Magnetism of oxide antiferromagnets (AFMs) has been studied in single crystals and extended thin films. The properties of AFM nanostructures still remain underexplored. Here, we report on the fabrication and magnetic imaging of granular 100 nm-thick magnetoelectric Cr2O3 films patterned in circular bits with diameters ranging from 500 down to 100 nm. With the change of the lateral size, the domain structure evolves from a multidomain state for larger bits to a single domain state for the smallest bits. Based on spin-lattice simulations, we show that the physics of the domain pattern formation in granular AFM bits is primarily determined by the energy dissipation upon cooling, which results in motion and expelling of AFM domain walls of the bit. Our results provide a way toward the fabrication of single domain AFM-bit-patterned memory devices and the exploration of the interplay between AFM nanostructures and their geometric shape.
RESUMO
Replicating neural responses observed in biological systems using artificial neural networks holds significant promise in the fields of medicine and engineering. In this study, we employ ultra-fast artificial neurons based on antiferromagnetic (AFM) spin Hall oscillators to emulate the biological withdrawal reflex responsible for self-preservation against noxious stimuli, such as pain or temperature. As a result of utilizing the dynamics of AFM neurons, we are able to construct an artificial neural network that can mimic the functionality and organization of the biological neural network responsible for this reflex. The unique features of AFM neurons, such as inhibition that stems from an effective AFM inertia, allow for the creation of biologically realistic neural network components, like the interneurons in the spinal cord and antagonist motor neurons. To showcase the effectiveness of AFM neuron modeling, we conduct simulations of various scenarios that define the withdrawal reflex, including responses to both weak and strong sensory stimuli, as well as voluntary suppression of the reflex.
Assuntos
Modelos Neurológicos , Redes Neurais de Computação , Neurônios , Reflexo , Neurônios/fisiologia , Reflexo/fisiologia , Humanos , Animais , Simulação por ComputadorRESUMO
Strong spin-lattice coupling in van der Waals (vdW) magnets shows potential for innovative magneto-mechanical applications. Here, nanoscale and picosecond imaging by ultrafast electron microscopy reveal heterogeneous spin-mediated coherent acoustic phonon dynamics in a thin-film cavity of the vdW antiferromagnet FePS3. The harmonics of the interlayer shear acoustic modes are observed, in which the even and odd harmonics exhibit distinct nanoscopic dynamics. Corroborated by acoustic wave simulation, the role of defects in forming even harmonics is elucidated. Above the Néel temperature (TN), the interlayer shear acoustic harmonics are suppressed, while the in-plane traveling wave is predominantly excited. The dominant acoustic dynamics shifts from the out-of-plane shear to the in-plane traveling wave across TN, demonstrating that magnetic properties can influence phonon scattering pathways. The spatiotemporally resolved structural characterization provides valuable nanoscopic insights for interlayer-shear-mode-based acoustic cavities, opening up possibilities for magneto-mechanical applications of vdW magnets.
RESUMO
Topological phonons and magnons potentially enable low-loss, quantum coherent, and chiral transport of information and energy at the atomic scale. Van der Waals magnetic materials are promising to realize such states due to their recently discovered strong interactions among the electronic, spin, and lattice degrees of freedom. Here, we report the first observation of coherent hybridization of magnons and phonons in monolayer antiferromagnet FePSe3 by cavity-enhanced magneto-Raman spectroscopy. The robust magnon-phonon cooperativity in the 2D limit occurs even in zero magnetic field, which enables nontrivial band inversion between longitudinal and transverse optical phonons caused by the strong coupling with magnons. The spin and lattice symmetry theoretically guarantee magnetic-field-controlled topological phase transition, verified by nonzero Chern numbers calculated from the coupled spin-lattice model. The 2D topological magnon-phonon hybridization potentially offers a new route toward quantum phononics and magnonics with an ultrasmall footprint.
RESUMO
The long-sought Chern insulators that manifest a quantum anomalous Hall effect are typically considered to occur in ferromagnets. Here, we theoretically predict the realizabilities of Chern insulators in antiferromagnets, in which the magnetic sublattices are connected by symmetry operators enforcing zero net magnetic moment. Our symmetry analysis provides comprehensive magnetic layer point groups that allow antiferromagnetic (AFM) Chern insulators, revealing that an in-plane magnetic configuration is required. Followed by first-principles calculations, such design principles naturally lead to two categories of material candidates, exemplified by monolayer RbCr4S8 and bilayer Mn3Sn with collinear and noncollinear AFM orders, respectively. We further show that the Chern number could be tuned by slight ferromagnetic canting as an effective pivot. Our work elucidates the nature of the Chern-insulator phase in AFM systems, paving a new avenue for designing quantum anomalous Hall insulators with the integration of nondissipative transport and the promising advantages of the AFM order.
RESUMO
As a promising alternative to the mainstream CoFeB/MgO system with interfacial perpendicular magnetic anisotropy (PMA), L10-FePd and its synthetic antiferromagnet (SAF) structure with large crystalline PMA can support spintronic devices with sufficient thermal stability at sub-5 nm sizes. However, the compatibility requirement of preparing L10-FePd thin films on Si/SiO2 wafers is still unmet. In this paper, we prepare high-quality L10-FePd and its SAF on Si/SiO2 wafers by coating the amorphous SiO2 surface with an MgO(001) seed layer. The prepared L10-FePd single layer and SAF stack are highly (001)-textured, showing strong PMA, low damping, and sizeable interlayer exchange coupling, respectively. Systematic characterizations, including advanced X-ray diffraction measurement and atomic resolution-scanning transmission electron microscopy, are conducted to explain the outstanding performance of L10-FePd layers. A fully-epitaxial growth that starts from MgO seed layer, induces the (001) texture of L10-FePd, and extends through the SAF spacer is observed. This study makes the vision of scalable spintronics more practical.
RESUMO
A magnetic skyrmionium can be perceived as an association of two magnetic skyrmions with opposite topological charges. In this work, we have investigated the transformation of skyrmionium into multi-skyrmionic states via domain wall pairs in three different devices with variable geometric configurations. The same device geometries are considered for single ferromagnetic layer and synthetic antiferromagnetic system. It is observed that by tuning the current density, deterministic generation of skyrmions is possible via the spin transfer torque. The proposed device is efficiently adjustable to change the number of skyrmions also at room temperature. The results may lead to development of skyrmion-based devices for neuromorphic and unconventional computing.
RESUMO
As the core of spintronics, the transport of spin aims at a low-dissipation data process. The pure spin current transmission carried by magnons in antiferromagnetic insulators is natively endowed with superiority such as long-distance propagation and ultrafast speed. However, the traditional control of magnon transport in an antiferromagnet via a magnetic field or temperature variation adds critical inconvenience to practical applications. Controlling magnon transport by electric methods is a promising way to overcome such embarrassment and to promote the development of energy-efficient antiferromagnetic logic. Here, the experimental realization of an electric field-induced piezoelectric strain-controlled magnon spin current transmission through the antiferromagnetic insulator in the Y3Fe5O12/Cr2O3/Pt trilayer is reported. An efficient and nonvolatile manipulation of magnon propagation/blocking is achieved by changing the relative direction between the Néel vector and spin polarization, which is tuned by ferroelastic strain from the piezoelectric substrate. The piezoelectric strain-controlled antiferromagnetic magnon transport opens an avenue for the exploitation of antiferromagnet-based spin/magnon transistors with ultrahigh energy efficiency.
RESUMO
We report on magneto-optical studies of the quasi-two-dimensional van der Waals antiferromagnet FePS3. Our measurements reveal an excitation that closely resembles the antiferromagnetic resonance mode typical of easy-axis antiferromagnets; nevertheless, it displays an unusual, four-times larger Zeeman splitting in an applied magnetic field. We identify this excitation with an |Sz| = 4 multipolar magnonâa single-ion 4-magnon bound stateâthat corresponds to a full reversal of a single magnetic moment of the Fe2+ ion. We argue that condensation of multipolar magnons in large-spin materials with a strong magnetic anisotropy can produce new exotic states.
RESUMO
Currently, two-dimensional (2D) materials with intrinsic antiferromagnetism have stimulated research interest due to their insensitivity to external magnetic fields and absence of stray fields. Here, we predict a family of stable transition metal (TM) borides, TMB12 (TM = V, Cr, Mn, Fe) monolayers, by combining TM atoms and B12 icosahedra based on first-principles calculations. Our results show that the four TMB12 monolayers have stable antiferromagnetic (AFM) ground states with large magnetic anisotropic energy. Among them, three TMB12 (TM=V, Cr, Mn) monolayers display an in-plane easy magnetization axis, while the FeB12 monolayer has an out-of-plane easy magnetization axis. Among them, the CrB12 and the FeB12 monolayers are AFM semiconductors with band gaps of 0.13 eV and 0.35 eV, respectively. In particular, the AFM FeB12 monolayer is a spin-polarized AFM material with a Néel temperature of 125 K. Moreover, the electronic and magnetic properties of the CrB12 and the FeB12 monolayers can be modulated by imposing external biaxial strains. Our findings show that the TMB12 monolayers are candidates for designing 2D AFM materials, with potential applications in electronic devices.
RESUMO
Not only since the progressive reduction of structure sizes in modern micro- and nanotechnology, surface and interface effects have played an ever-increasing role and nowadays often dominate the behavior of entire systems. Therefore, understanding the nature of surface and interface effects and being able to fully control them is of fundamental importance, in particular in modern thin-film technology. In this study, it is revealed how Co/Pt multilayer-based synthetic antiferromagnets (SAFs) with perpendicular magnetic anisotropy in the regime of dominating antiferromagnetic interlayer exchange can be employed to control the collective magnetic reversal via systematically altering surface and interface effects. The specifically designed samples and experiments highlight the superior tunability of synthetic systems as compared to their intrinsic stoichiometric counterparts, where the antiferromagnetism is directly tied to the indivisible discrete atomic nature and crystal structure of the materials. Thus, it is demonstrated that in SAFs, it becomes possible to energetically heal the broken magnetic symmetry at the surface, thereby enabling either on demand suppression or controlled enhancement of respective surface and interface effects, as demonstrated here in this study for the surface spin-flop and the exchange bias effect.
RESUMO
Layered (2D) artificial (or synthetic) antiferromagnets are fabricated by atom deposition techniques and possess very thin, nanometer-scale, magnetically ordered layers separated by a very thin nonmagnetic layer that antiferromagnetically couples the magnetic layers. Artificial antiferromagnets were crucial in the discovery of the giant magnetic effect (GMR), which had an incredible impact on the evolution of computer memory and its applications, and nucleated the dawn of spintronics (magnetoelectrics). The fundamental structural motif has been more recently achieved by using synthetic chemical methods that led to insulating artificial antiferromagnets. Examples of magnetically ordered layers that are antiferromagnetic coupled to form artificial antiferromagnets have been extended to isolated ions (0D) as well as extended chain (1D) and extended network 3D structures, and new phenomena and applications are anticipated as insulating antiferromagnets are more effective at propagating spin currents with respect to dielectric materials.
RESUMO
A detailed experimental investigation of Fe1+y Te (y = 0.11, 0.12) using pulsed magnetic fields up to 60 T confirms remarkable magnetic shape-memory (MSM) effects. These effects result from magnetoelastic transformation processes in the low-temperature antiferromagnetic state of these materials. The observation of modulated and finely twinned microstructure at the nanoscale through scanning tunneling microscopy establishes a behavior similar to that of thermoelastic martensite. We identified the observed, elegant hierarchical twinning pattern of monoclinic crystallographic domains as an ideal realization of crossing twin bands. The antiferromagnetism of the monoclinic ground state allows for a magnetic-field-induced reorientation of these twin variants by the motion of one type of twin boundaries. At sufficiently high magnetic fields, we observed a second isothermal transformation process with large hysteresis for different directions of applied field. This gives rise to a second MSM effect caused by a phase transition back to the field-polarized tetragonal lattice state.
RESUMO
We unravel the origin of current-induced magnetic switching of insulating antiferromagnet/heavy metal systems. We utilize concurrent transport and magneto-optical measurements to image the switching of antiferromagnetic domains in specially engineered devices of NiO/Pt bilayers. Different electrical pulsing and device geometries reveal different final states of the switching with respect to the current direction. We can explain these through simulations of the temperature-induced strain, and we identify the thermomagnetoelastic switching mechanism combined with thermal excitations as the origin, in which the final state is defined by the strain distributions and heat is required to switch the antiferromagnetic domains. We show that such a potentially very versatile noncontact mechanism can explain the previously reported contradicting observations of the switching final state, which were attributed to spin-orbit torque mechanisms.
RESUMO
The compensated magnetic order and characteristic terahertz frequencies of antiferromagnetic materials make them promising candidates to develop a new class of robust, ultrafast spintronic devices. The manipulation of antiferromagnetic spin-waves in thin films is anticipated to lead to new exotic phenomena such as spin-superfluidity, requiring an efficient propagation of spin-waves in thin films. However, the reported decay length in thin films has so far been limited to a few nanometers. In this work, we achieve efficient spin-wave propagation over micrometer distances in thin films of the insulating antiferromagnet hematite with large magnetic domains while evidencing much shorter attenuation lengths in multidomain thin films. Through transport and magnetic imaging, we determine the role of the magnetic domain structure and spin-wave scattering at domain walls to govern the transport. We manipulate the spin transport by tailoring the domain configuration through field cycle training. For the appropriate crystalline orientation, zero-field spin transport is achieved across micrometers, as required for device integration.
RESUMO
Electric-field-driven spintronic devices are considered promising candidates for beyond CMOS logic and memory applications thanks to their potential for ultralow energy switching and nonvolatility. In this work, we have developed a comprehensive modeling framework to understand the fundamental physics of the switching mechanisms of the antiferromagnet/ferromagnet heterojunction by taking BiFeO3/CoFe heterojunctions as an example. The models are calibrated with experimental results and demonstrate that the switching of the ferromagnet in the antiferromagnet/ferromagnet heterojunction is caused by the rotation of the Neel vector in the antiferromagnet and is not driven by the unidirectional exchange bias at the interface as was previously speculated. Additionally, we demonstrate that the fundamental limit of the switching time of the ferromagnet is in the subnanosecond regime. The geometric dependence and the thermal stability of the antiferromagnet/ferromagnet heterojunction are also explored. Our simulation results provide the critical metrics for designing magnetoelectric devices.
RESUMO
Antiferromagnets have recently emerged as attractive platforms for spintronics applications, offering fundamentally new functionalities compared with their ferromagnetic counterparts. Whereas nanoscale thin-film materials are key to the development of future antiferromagnetic spintronic technologies, existing experimental tools tend to suffer from low resolution or expensive and complex equipment requirements. We offer a simple, high-resolution alternative by addressing the ubiquitous surface magnetization of magnetoelectric antiferromagnets in a granular thin-film sample on the nanoscale using single-spin magnetometry in combination with spin-sensitive transport experiments. Specifically, we quantitatively image the evolution of individual nanoscale antiferromagnetic domains in 200 nm thin films of Cr2O3 in real space and across the paramagnet-to-antiferromagnet phase transition, finding an average domain size of 230 nm, several times larger than the average grain size in the film. These experiments allow us to discern key properties of the Cr2O3 thin film, including the boundary magnetic moment density, the variation of critical temperature throughout the film, the mechanism of domain formation, and the strength of exchange coupling between individual grains comprising the film. Our work offers novel insights into the magnetic ordering mechanism of Cr2O3 and firmly establishes single-spin magnetometry as a versatile and widely applicable tool for addressing antiferromagnetic thin films on the nanoscale.