Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Microbiol Rev ; : e0010924, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39404268

RESUMO

SUMMARYThe artemisinin antimalarials are the cornerstone of current malaria treatment. The development of artemisinin resistance in Plasmodium falciparum poses a major threat to malaria control and elimination. Recognized first in the Greater Mekong subregion of Southeast Asia nearly 20 years ago, artemisinin resistance has now been documented in Guyana, South America, in Papua New Guinea, and most recently, it has emerged de novo in East Africa (Rwanda, Uganda, South Sudan, Tanzania, Ethiopia, Eritrea, and eastern DRC) where it has now become firmly established. Artemisinin resistance is associated with mutations in the propeller region of the PfKelch gene, which play a causal role, although the parasites' genetic background also makes an important contribution to the phenotype. Clinically, artemisinin resistance manifests as reduced parasiticidal activity and slower parasite clearance and thus an increased risk of treatment failure following artemisinin-based combination therapy (ACT). This results from the loss of artemisinin activity against the younger circulating ring stage parasites. This loss of activity is likely to diminish the life-saving advantage of artesunate in the treatment of severe falciparum malaria. Gametocytocidal and thus transmission blocking activities are also reduced. At current levels of resistance, artemisinin-resistant parasites still remain susceptible at the trophozoite stage of asexual development, and so, artemisinin still contributes to the therapeutic response. As ACTs are the most widely used antimalarial drugs in the world, it is essential from a malaria control perspective that ACT cure rates remain high. Better methods of identifying uncomplicated hyperparasitemia, the main cause of ACT treatment failure, are required so that longer courses of treatment can be given to these high-risk patients. Reducing the use of artemisinin monotherapies will reduce the continued selection pressure which could lead potentially to higher levels of artemisinin resistance. Triple artemisinin combination therapies should be deployed as soon as possible to protect the ACT partner drugs and thereby delay the emergence of higher levels of resistance. As new affordable antimalarial drugs are still several years away, the control of artemisinin resistance must depend on the better use of available tools.

2.
Antimicrob Agents Chemother ; 68(5): e0028024, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38587391

RESUMO

Testing Plasmodium vivax antimicrobial sensitivity is limited to ex vivo schizont maturation assays, which preclude determining the IC50s of delayed action antimalarials such as doxycycline. Using Plasmodium cynomolgi as a model for P. vivax, we determined the physiologically significant delayed death effect induced by doxycycline [IC50(96 h), 1,401 ± 607 nM]. As expected, IC50(96 h) to chloroquine (20.4 nM), piperaquine (12.6 µM), and tafenoquine (1,424 nM) were not affected by extended exposure.


Assuntos
Aminoquinolinas , Antimaláricos , Doxiciclina , Piperazinas , Plasmodium cynomolgi , Plasmodium vivax , Doxiciclina/farmacologia , Antimaláricos/farmacologia , Aminoquinolinas/farmacologia , Plasmodium vivax/efeitos dos fármacos , Plasmodium cynomolgi/efeitos dos fármacos , Cloroquina/farmacologia , Animais , Malária Vivax/tratamento farmacológico , Malária Vivax/parasitologia , Quinolinas/farmacologia , Concentração Inibidora 50 , Humanos , Testes de Sensibilidade Parasitária
3.
Antimicrob Agents Chemother ; 68(8): e0123823, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39037239

RESUMO

We identified MMV026468 as a picomolar inhibitor of blood-stage Plasmodium falciparum. Phenotyping assays, including isopentenyl diphosphate rescue of parasite growth inhibition, demonstrated that it targets MEP isoprenoid precursor biosynthesis. MMV026468-treated parasites showed an overall decrease in MEP pathway intermediates, which could result from inhibition of the first MEP enzyme DXS or steps prior to DXS such as regulation of the MEP pathway. Selection of MMV026468-resistant parasites lacking DXS mutations suggested that other targets are possible. The identification of MMV026468 could lead to a new class of antimalarial isoprenoid inhibitors.


Assuntos
Antimaláricos , Plasmodium falciparum , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Compostos Organofosforados/farmacologia , Hemiterpenos/farmacologia , Resistência a Medicamentos , Humanos , Eritritol/análogos & derivados , Eritritol/farmacologia
4.
Bioorg Chem ; 146: 107249, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493638

RESUMO

One of the deadliest infectious diseases, malaria, still has a significant impact on global morbidity and mortality. Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) catalyzes the fourth step in de novo pyrimidine nucleotide biosynthesis and has been clinically validated as an innovative and promising target for the development of novel targeted antimalarial drugs. PfDHODH inhibitors have the potential to significantly slow down parasite growth at the blood and liver stages. Several PfDHODH inhibitors based on various scaffolds have been explored over the past two decades. Among them, triazolopyrimidines, isoxazolopyrimidines, and pyrrole-based derivatives known as DSM compounds showed tremendous potential as novel antimalarial agents, and one of the triazolopyrimidine-based compounds (DSM265) was able to reach phase IIa clinical trials. DSM compounds were synthesized as PfDHODH inhibitors with various substitutions based on structure-guided medicinal chemistry approaches and further optimised as well. For the first time, this review provides an overview of all the synthetic approaches used for the synthesis, alternative synthetic routes, and novel strategies involving various catalysts and chemical reagents that have been used to synthesize DSM compounds. We have also summarized SAR study of all these PfDHODH inhibitors. In an attempt to assist readers, scientists, and researchers involved in the development of new PfDHODH inhibitors as antimalarials, this review provides accessibility of all synthetic techniques and SAR studies of the most promising triazolopyrimidines, isoxazolopyrimidines, and pyrrole-based PfDHODH inhibitors.


Assuntos
Antimaláricos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Antimaláricos/química , Plasmodium falciparum , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Pirróis/farmacologia , Di-Hidro-Orotato Desidrogenase , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
5.
Bioorg Chem ; 153: 107754, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39241585

RESUMO

Malaria remains a severe global health concern, with 249 million cases reported in 2022, according to the World Health Organization (WHO) [1]. PfDHODH is an essential enzyme in malaria parasites that helps to synthesize certain building blocks for their growth and development. It has been confirmed that targeting Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) enzyme could lead to new and effective antimalarial drugs. Inhibitors of PfDHODH have shown potential for slowing down parasite growth during both the blood and liver stages. Over the last two decades, many species selective PfDHODH inhibitors have been designed, including DSM compounds and other non-DSM compounds. In the first chapter [2] of this review, we have reviewed all synthetic schemes and structure-activity relationship (SAR) studies of DSM compounds. In this second chapter, we have compiled all the other non-DSM PfDHODH inhibitors based on dihydrothiophenones, thiazoles, hydroxyazoles, and N-alkyl-thiophene-2-carboxamides. The review not only offers an insightful overview of the synthetic methods employed but also explores into alternative routes and innovative strategies involving different catalysts and chemical reagents. A critical aspect covered in the review is the SAR studies, which provide a comprehensive understanding of how structural modifications impact the efficacy of PfDHODH inhibitors and challenges related to the discovery of PfDHODH inhibitors. This information is invaluable for scientists engaged in the development of new antimalarial drugs, offering insights into the most promising scaffolds and their synthetic techniques.

6.
Chem Biodivers ; 21(10): e202400644, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38958342

RESUMO

Naturally occurring peroxides received great interest and attention from scientific research groups worldwide due to their structural diversity, versatile biological activities, and pharmaceutical properties. In the present review, we describe the historical discovery of natural peroxides from plants systematically and update the researchers with recently explored ones justifying their structural caterogrization and biological/pharmaceutical properties intensively. Till the end of 2023, 192 peroxy natural products from plants were documented herein for the first time implying most categories of natural scaffolds (e. g. terpenes, polyketides, phenolics and alkaloids). Numerically, the reported plants' peroxides have been classified into seventy-four hydro-peroxides, hundred seven endo-peroxides and eleven acyl-peroxides. Endo-peroxides (cyclic alkyl peroxides) are an important group due to their high variety of structural frameworks, and we have further divided them into "four-, five-, six and seven"-membered rings. Biosynthetically, a shedding light on the intricate mechanisms behind the formation of plant-derived peroxides are addressed as well.


Assuntos
Produtos Biológicos , Peróxidos , Plantas , Peróxidos/química , Peróxidos/farmacologia , Peróxidos/metabolismo , Plantas/química , Plantas/metabolismo , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo , Produtos Biológicos/isolamento & purificação , Humanos , Estrutura Molecular
7.
Arch Pharm (Weinheim) ; 357(9): e2400222, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38837417

RESUMO

Plasmodium parasites are the primary cause of malaria, leading to high mortality rates, which require clinical attention. Many of the medications used in the treatment have resulted in resistance over time. Artemisinin combination therapy (ACT) has shown significant results for the treatment. However, mutations in the parasite have resulted in resistance, leading to decreased efficiency of the medications that are currently being used. Therefore, there is a critical need to find novel scaffolds that are safe, effective, and of economic advantage. Literature has reported several potent molecules with diverse scaffolds designed, synthesized, and evaluated against different strains of Plasmodium. With this growing list of compounds, it is essential to collect the data in one place to gain a concise overview of the emerging scaffolds in recent years. For this purpose, nitrogen-containing heterocycles such as ß-carboline, imidazole, quinazoline, quinoline, thiazole, and thiophene have been highly explored due to their wide biological applications. Besides these, another scaffold, benzodiazepine, which is majorly used as a central nervous system depressant, is emerging as an anti-malarial agent. Hence, this review centers on the latest medication advancements designed to combat malaria, emphasizing special attention to 1,4-benzodiazepines as a novel scaffold for antimalarial drug discovery.


Assuntos
Antimaláricos , Malária , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/síntese química , Humanos , Malária/tratamento farmacológico , Malária/parasitologia , Compostos de Nitrogênio/química , Compostos de Nitrogênio/farmacologia , Compostos de Nitrogênio/síntese química , Plasmodium/efeitos dos fármacos , Animais , Descoberta de Drogas , Resistência a Medicamentos , Relação Estrutura-Atividade , Estrutura Molecular
8.
Antimicrob Agents Chemother ; 67(8): e0035623, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37428074

RESUMO

Malaria parasites in the blood stage express a single transmembrane transport protein for the release of the glycolytic end product l-lactate/H+ from the cell. This transporter is a member of the strictly microbial formate-nitrite transporter (FNT) family and a novel putative drug target. Small, drug-like FNT inhibitors potently block lactate transport and kill Plasmodium falciparum parasites in culture. The protein structure of Plasmodium falciparum FNT (PfFNT) in complex with the inhibitor has been resolved and confirms its previously predicted binding site and its mode of action as a substrate analog. Here, we investigated the mutational plasticity and essentiality of the PfFNT target on a genetic level, and established its in vivo druggability using mouse malaria models. We found that, besides a previously identified PfFNT G107S resistance mutation, selection of parasites at 3 × IC50 (50% inhibitory concentration) gave rise to two new point mutations affecting inhibitor binding: G21E and V196L. Conditional knockout and mutation of the PfFNT gene showed essentiality in the blood stage, whereas no phenotypic defects in sexual development were observed. PfFNT inhibitors mainly targeted the trophozoite stage and exhibited high potency in P. berghei- and P. falciparum-infected mice. Their in vivo activity profiles were comparable to that of artesunate, demonstrating strong potential for the further development of PfFNT inhibitors as novel antimalarials.


Assuntos
Antimaláricos , Malária Falciparum , Parasitos , Animais , Camundongos , Transportadores de Ácidos Monocarboxílicos/química , Transportadores de Ácidos Monocarboxílicos/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Malária Falciparum/parasitologia , Antimaláricos/farmacologia , Antimaláricos/química , Parasitos/metabolismo , Lactatos/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Proteínas de Protozoários/metabolismo
9.
Antimicrob Agents Chemother ; 67(6): e0157422, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37133382

RESUMO

The development of new combinations of antimalarial drugs is urgently needed to prevent the spread of parasites resistant to drugs in clinical use and contribute to the control and eradication of malaria. In this work, we evaluated a standardized humanized mouse model of erythrocyte asexual stages of Plasmodium falciparum (PfalcHuMouse) for the selection of optimal drug combinations. First, we showed that the replication of P. falciparum was robust and highly reproducible in the PfalcHuMouse model by retrospective analysis of historical data. Second, we compared the relative value of parasite clearance from blood, parasite regrowth after suboptimal treatment (recrudescence), and cure as variables of therapeutic response to measure the contributions of partner drugs to combinations in vivo. To address the comparison, we first formalized and validated the day of recrudescence (DoR) as a new variable and found that there was a log-linear relationship with the number of viable parasites per mouse. Then, using historical data on monotherapy and two small cohorts of PfalcHuMice evaluated with ferroquine plus artefenomel or piperaquine plus artefenomel, we found that only measurements of parasite killing (i.e., cure of mice) as a function of drug exposure in blood allowed direct estimation of the individual drug contribution to efficacy by using multivariate statistical modeling and intuitive graphic displays. Overall, the analysis of parasite killing in the PfalcHuMouse model is a unique and robust experimental in vivo tool to inform the selection of optimal combinations by pharmacometric pharmacokinetic and pharmacodynamic (PK/PD) modeling.


Assuntos
Antimaláricos , Malária Falciparum , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium falciparum , Estudos Retrospectivos , Peróxidos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Combinação de Medicamentos
10.
Antimicrob Agents Chemother ; 67(6): e0170922, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37154745

RESUMO

Atovaquone-proguanil (AP) is used as treatment for uncomplicated malaria, and as a chemoprophylactic agent against Plasmodium falciparum. Imported malaria remains one of the top causes of fever in Canadian returning travelers. Twelve sequential whole-blood samples before and after AP treatment failure were obtained from a patient diagnosed with P. falciparum malaria upon their return from Uganda and Sudan. Ultradeep sequencing was performed on the cytb, dhfr, and dhps markers of treatment resistance before and during the episode of recrudescence. Haplotyping profiles were generated using three different approaches: msp2-3D7 agarose and capillary electrophoresis, and cpmp using amplicon deep sequencing (ADS). A complexity of infection (COI) analysis was conducted. De novo cytb Y268C mutants strains were observed during an episode of recrudescence 17 days and 16 h after the initial malaria diagnosis and AP treatment initiation. No Y268C mutant reads were observed in any of the samples prior to the recrudescence. SNPs in the dhfr and dhps genes were observed upon initial presentation. The haplotyping profiles suggest multiple clones mutating under AP selection pressure (COI > 3). Significant differences in COI were observed by capillary electrophoresis and ADS compared to the agarose gel results. ADS using cpmp revealed the lowest haplotype variation across the longitudinal analysis. Our findings highlight the value of ultra-deep sequencing methods in the understanding of P. falciparum haplotype infection dynamics. Longitudinal samples should be analyzed in genotyping studies to increase the analytical sensitivity.


Assuntos
Antimaláricos , Malária Falciparum , Humanos , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Sefarose/uso terapêutico , Canadá , Proguanil/farmacologia , Proguanil/uso terapêutico , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Malária Falciparum/prevenção & controle , Combinação de Medicamentos , Falha de Tratamento , Tetra-Hidrofolato Desidrogenase , Sequenciamento de Nucleotídeos em Larga Escala , Recidiva
11.
Mol Divers ; 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37418167

RESUMO

Here we demonstrated a solvent free, mechanochemical I2 catalyzed C(sp2)-H sulfenylation of enaminones under grinding condition. Only catalytic amount of I2 is required on silica surface without any external heating. The reaction time has reduced to a great extent in comparison to their solution based counterpart. The frictional energy created by ball-mill on mesoporous silica materials has attracted much attention towards this mechanochemical approach for molecular heterogeneous catalysis. Their large surface area and well defined porous architecture certainly increase the catalytic ability of iodine in this developed protocol. Anti-microbial activities of our synthesized compounds were investigated against two gram positive (Staphylococcus aureus and Bacillus cereus) and two gram negative (Escherichia coli and Klebsiella pneumonia) bacteria. To understand the potency of these compounds (3a-3m) as antimalarial agents, molecular docking studies were also performed. Density functional theory was also used to investigate the chemical reactivity and kinetic stability of the compound 3a-3m.

12.
Antimicrob Agents Chemother ; 66(10): e0081722, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36094216

RESUMO

The proteasome is a promising target for antimalarial chemotherapy. We assessed ex vivo susceptibilities of fresh Plasmodium falciparum isolates from eastern Uganda to seven proteasome inhibitors: two asparagine ethylenediamines, two macrocyclic peptides, and three peptide boronates; five had median IC50 values <100 nM. TDI8304, a macrocylic peptide lead compound with drug-like properties, had a median IC50 of 16 nM. Sequencing genes encoding the ß2 and ß5 catalytic proteasome subunits, the predicted targets of the inhibitors, and five additional proteasome subunits, identified two mutations in ß2 (I204T, S214F), three mutations in ß5 (V2I, A142S, D150E), and three mutations in other subunits. The ß2 S214F mutation was associated with decreased susceptibility to two peptide boronates, with IC50s of 181 nM and 2635 nM against mutant versus 62 nM and 477 nM against wild type parasites for MMV1579506 and MMV1794229, respectively, although significance could not be formally assessed due to the small number of mutant parasites with available data. The other ß2 and ß5 mutations and mutations in other subunits were not associated with susceptibility to tested compounds. Against culture-adapted Ugandan isolates, two asparagine ethylenediamines and the peptide proteasome inhibitors WLW-vinyl sulfone and WLL-vinyl sulfone (which were not studied ex vivo) demonstrated low nM activity, without decreased activity against ß2 S214F mutant parasites. Overall, proteasome inhibitors had potent activity against P. falciparum isolates circulating in Uganda, and genetic variation in proteasome targets was uncommon.


Assuntos
Antimaláricos , Plasmodium falciparum , Inibidores de Proteassoma , Humanos , Antimaláricos/farmacologia , Antimaláricos/química , Asparagina , Resistência a Medicamentos/genética , Etilenodiaminas/farmacologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Peptídeos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Complexo de Endopeptidases do Proteassoma/genética , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Uganda
13.
Antimicrob Agents Chemother ; 66(4): e0194521, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35266823

RESUMO

Molecular surveillance of Plasmodium falciparum parasites is important to track emerging and new mutations and trends in established mutations and should serve as an early warning system for antimalarial resistance. Dried blood spots were obtained from a Plasmodium falciparum malaria survey in school children conducted across eight counties in western Kenya in 2019. Real-time PCR identified 500 P. falciparum-positive samples that were amplified at five drug resistance loci for targeted amplicon deep sequencing (TADS). The absence of important kelch 13 mutations was similar to previous findings in Kenya pre-2019, and low-frequency mutations were observed in codons 569 and 578. The chloroquine resistance transporter gene codons 76 and 145 were wild type, indicating that the parasites were chloroquine and piperaquine sensitive, respectively. The multidrug resistance gene 1 haplotypes based on codons 86, 184, and 199 were predominantly present in mixed infections with haplotypes NYT and NFT, driven by the absence of chloroquine pressure and the use of lumefantrine, respectively. The sulfadoxine-pyrimethamine resistance profile was a "superresistant" combination of triple mutations in both Pfdhfr (51I 59R 108N) and Pfdhps (436H 437G 540E), rendering sulfadoxine-pyrimethamine ineffective. TADS highlighted the low-frequency variants, allowing the early identification of new mutations, Pfmdr1 codon 199S and Pfdhfr codon 85I and emerging 164L mutations. The added value of TADS is its accuracy in identifying mixed-genotype infections and for high-throughput monitoring of antimalarial resistance markers.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária Falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Criança , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Códon , Combinação de Medicamentos , Resistência a Medicamentos/genética , Antagonistas do Ácido Fólico/farmacologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Quênia , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico , Pirimetamina/uso terapêutico , Sulfadoxina/uso terapêutico
14.
Antimicrob Agents Chemother ; 66(10): e0054022, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36094195

RESUMO

The ability of the human malaria parasite Plasmodium falciparum to access and utilize vital nutrients is critical to its growth and proliferation. Molecules that interfere with these processes could potentially serve as antimalarials. We found that two riboflavin analogues, roseoflavin and 8-aminoriboflavin, inhibit malaria parasite proliferation by targeting riboflavin metabolism and/or the utilization of the riboflavin metabolites flavin mononucleotide and flavin adenine dinucleotide. An additional eight riboflavin analogues were evaluated, but none were found to be more potent than roseoflavin, nor was their activity on target. Focusing on roseoflavin, we tested its antimalarial activity in vivo against Plasmodium vinckei vinckei in mice. We found that roseoflavin decreased the parasitemia by 46-fold following a 4 day suppression test and, on average, increased the survival of mice by 4 to 5 days. Our data are consistent with riboflavin metabolism and/or the utilization of riboflavin-derived cofactors being viable drug targets for the development of new antimalarials and that roseoflavin could serve as a potential starting point.


Assuntos
Antimaláricos , Malária , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Mononucleotídeo de Flavina/farmacologia , Mononucleotídeo de Flavina/metabolismo , Mononucleotídeo de Flavina/uso terapêutico , Flavina-Adenina Dinucleotídeo/metabolismo , Flavina-Adenina Dinucleotídeo/uso terapêutico , Malária/tratamento farmacológico , Plasmodium falciparum/metabolismo , Riboflavina/farmacologia , Riboflavina/metabolismo
15.
Antimicrob Agents Chemother ; 66(9): e0041822, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35943271

RESUMO

As the malaria parasite becomes resistant to every drug that we develop, the identification and development of novel drug candidates are essential. Many studies have screened compounds designed to target the clinically important blood stages. However, if we are to shrink the malaria map, new drugs that block the transmission of the parasite are needed. Sporozoites are the infective stage of the malaria parasite, transmitted to the mammalian host as mosquitoes probe for blood. Sporozoite motility is critical to their ability to exit the inoculation site and establish infection, and drug-like compounds targeting motility are effective at blocking infection in the rodent malaria model. In this study, we established a moderate-throughput motility assay for sporozoites of the human malaria parasite Plasmodium falciparum, enabling us to screen the 400 drug-like compounds from the pathogen box provided by the Medicines for Malaria Venture for their activity. Compounds exhibiting inhibitory effects on P. falciparum sporozoite motility were further assessed for transmission-blocking activity and asexual-stage growth. Five compounds had a significant inhibitory effect on P. falciparum sporozoite motility in the nanomolar range. Using membrane feeding assays, we demonstrate that four of these compounds had inhibitory activity against the transmission of P. falciparum to the mosquito. Interestingly, of the four compounds with inhibitory activity against both transmission stages, three are known kinase inhibitors. Together with a previous study that found that several of these compounds could inhibit asexual blood-stage parasite growth, our findings provide new antimalarial drug candidates that have multistage activity.


Assuntos
Anopheles , Antimaláricos , Malária Falciparum , Malária , Animais , Anopheles/parasitologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Humanos , Malária/prevenção & controle , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Mamíferos , Plasmodium falciparum , Esporozoítos
16.
Antimicrob Agents Chemother ; 66(11): e0042022, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36314787

RESUMO

Malaria is a mosquito-borne fatal infectious disease that affects humans and is caused by Plasmodium parasites, primarily Plasmodium falciparum. Widespread drug resistance compels us to discover novel compounds and alternative drug discovery targets. The coenzyme A (CoA) biosynthesis pathway is essential for the malaria parasite P. falciparum. The last enzyme in CoA biosynthesis, dephospho-CoA kinase (DPCK), is essential to the major life cycle development stages but has not yet been exploited as a drug target in antimalarial drug discovery. We performed a high-throughput screen of a 210,000-compound library using recombinant P. falciparum DPCK (PfDPCK). A high-throughput enzymatic assay using a 1,536-well platform was developed to identify potential PfDPCK inhibitors. PfDPCK inhibitors also inhibited parasite growth in a P. falciparum whole-cell asexual blood-stage assay in both drug-sensitive and drug-resistant strains. Hit compounds were selected based on their potency in cell-free (PfDPCK) and whole-cell (Pf3D7 and PfDd2) assays, selectivity over the human orthologue (HsCOASY) and no cytotoxicity (HepG2). The compounds were ranked using a multiparameter optimization (MPO) scoring model, and the specific binding and the mechanism of inhibition were investigated for the most promising compounds.


Assuntos
Antimaláricos , Coenzima A , Plasmodium falciparum , Animais , Humanos , Antimaláricos/uso terapêutico , Coenzima A/antagonistas & inibidores , Coenzima A/metabolismo , Ensaios de Triagem em Larga Escala , Estágios do Ciclo de Vida , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Bibliotecas de Moléculas Pequenas/farmacologia , Células Hep G2
17.
Antimicrob Agents Chemother ; 66(5): e0207921, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35465707

RESUMO

Treatment failures with artemisinin combination therapies (ACTs) threaten global efforts to eradicate malaria. They highlight the importance of identifying drug targets and new inhibitors and of studying how existing antimalarial classes work. Here, we report the successful development of a heterologous expression-based compound-screening tool. The validated drug target Plasmodium falciparum ATPase 6 (PfATP6) and a mammalian orthologue (sarco/endoplasmic reticulum calcium ATPase 1a [SERCA1a]) were functionally expressed in Saccharomyces cerevisiae, providing a robust, sensitive, and specific screening tool. Whole-cell and in vitro assays consistently demonstrated inhibition and labeling of PfATP6 by artemisinins. Mutations in PfATP6 resulted in fitness costs that were ameliorated in the presence of artemisinin derivatives when studied in the yeast model. As previously hypothesized, PfATP6 is a target of artemisinins. Mammalian SERCA1a can be mutated to become more susceptible to artemisinins. The inexpensive, low-technology yeast screening platform has identified unrelated classes of druggable PfATP6 inhibitors. Resistance to artemisinins may depend on mechanisms that can concomitantly address multitargeting by artemisinins and fitness costs of mutations that reduce artemisinin susceptibility.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , ATPases Transportadoras de Cálcio/genética , ATPases Transportadoras de Cálcio/metabolismo , ATPases Transportadoras de Cálcio/uso terapêutico , Resistência a Medicamentos , Malária Falciparum/tratamento farmacológico , Mamíferos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
18.
Bioorg Chem ; 121: 105671, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35168120

RESUMO

In our efforts to identify novel chemical scaffolds for the development of antimalarial agents, a series of quinoline - imidazole hybrid compounds were synthesized and their blood-stage antimalarial activity was evaluated in both drug-sensitive and -multi drug-resistant (MDR) P. falciparum strains. The new analogs possess sub-micromolar activities against Plasmodium falciparum. Among all synthesized derivatives, 11(xxxii) exhibited significant antimalarial efficacy in-vitro against both CQ-sensitive (IC50-0.14 µM) and MDR strain (IC50- 0.41 µM) with minimal cytotoxicity and high selectivity. Structure-activity relationships revealed that Br and OMe substitutions on quinoline ring improved the antimalarial activity and selectivity index. The role of stereochemistry in the inhibitory activity was assessed by enantiomeric separation of a racemic mixture of 11(xxxii). The enantiomer (-)-11(xxxii) had potent antimalarial activity over the other isomer, with IC50 of 0.10 µM.


Assuntos
Antimaláricos , Antiprotozoários , Hidroxiquinolinas , Nitroimidazóis , Quinolinas , Inibidores de 14-alfa Desmetilase/farmacologia , Antimaláricos/química , Antiprotozoários/farmacologia , Inibidores do Citocromo P-450 CYP3A , Imidazóis , Plasmodium falciparum , Quinolinas/química , Relação Estrutura-Atividade
19.
J Mol Struct ; 1261: 132808, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35291692

RESUMO

Prevention, accurate diagnosis, and effective treatment of infections are the main challenges in the overall management of infectious diseases. The best example is the ongoing SARs-COV-2(COVID-19) pandemic; the entire world is extremely worried about at present. Interestingly, heterocyclic moieties provide an ideal scaffold on which suitable pharmacophores can be designed to construct novel drugs. Indoles are amongst the most essential class of heteroaromatics in medicinal chemistry, which are ubiquitous across natural sources. The aforesaid derivatives have become invaluable scaffolds because of their wide spectrum therapeutic applications. Therefore, many researchers are focused on the design and synthesis of indole and associated hybrids of biological relevance. Hence, in the present review, we concisely discuss the indole containing natural sources, marketed drugs, clinical candidates, and their biological activities like antibacterial, antifungal, anti-TB, antiviral, antimalarial, and anti-leishmanial activities. The structure-activity relationships study of indole derivatives is also presented for a better understanding of the identified structures. The literature data presented for the anti-infective agents herein covers largely for the last twelve years.

20.
Angew Chem Int Ed Engl ; 61(28): e202204884, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35608327

RESUMO

A highly convergent total synthesis of (-)-bastimolide A (1), a polyhydroxy antimalarial macrolide, has been achieved via a longest linear sequence of twenty steps from commercially available glycidyl ethers. Type I Anion Relay Chemistry (ARC) coupling tactics enable rapid construction of the molecule's 1,5-polylol backbone. A late-stage B-alkyl Suzuki-Miyaura union and an Evans-modified Mukaiyama macrolactonization generate the forty-membered Z-α,ß-unsaturated macrocyclic lactone.


Assuntos
Antimaláricos , Macrolídeos , Ânions , Lactonas , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA