Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2027): 20240617, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39016598

RESUMO

Stressors associated with urban habitats have been linked to poor wildlife health but whether a general negative relationship between urbanization and animal health can be affirmed is unclear. We conducted a meta-analysis of avian literature to test whether health biomarkers differed on average between urban and non-urban environments, and whether there are systematic differences across species, biomarkers, life stages and species traits. Our dataset included 644 effect sizes derived from 112 articles published between 1989 and 2022, on 51 bird species. First, we showed that there was no clear impact of urbanization on health when we categorized the sampling locations as urban or non-urban. However, we did find a small negative effect of urbanization on health when this dichotomous variable was replaced by a quantitative variable representing the degree of urbanization at each location. Second, we showed that the effect of urbanization on avian health was dependent on the type of health biomarker measured as well as the individual life stage, with young individuals being more negatively affected. Our comprehensive analysis calls for future studies to disentangle specific urban-related drivers of health that might be obscured in categorical urban versus non-urban comparisons.


Assuntos
Aves , Urbanização , Animais , Aves/fisiologia , Ecossistema , Biomarcadores
2.
Ecol Appl ; 31(6): e02377, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33988277

RESUMO

Improved monitoring and associated inferential tools to efficiently identify declining bird populations, particularly of rare or sparsely distributed species, is key to informed conservation and management across large spatiotemporal regions. We assess abundance trends for 106 bird species in a network of eight forested national parks located within the northeast United States from 2006 to 2019 using a novel hierarchical model. We develop a multispecies, multiregion, removal-sampling model that shares information across species and parks to enable inference on rare species and sparsely sampled parks and to evaluate the effects of local forest structure. Trends in bird abundance over time varied widely across parks, but species showed similar trends within parks. Three parks (Acadia National Park and Marsh-Billings-Rockefeller and Morristown National Historical Parks [NHP]) decreased in bird abundance across all species, while three parks (Saratoga NHP and Roosevelt-Vanderbilt and Weir-Farm National Historic Sites) increased in abundance. Bird abundance peaked at medium levels of basal area and high levels of percent forest and forest regeneration, with percent forest having the largest effect. Variation in these effects across parks could be a result of differences in forest structural stage and diversity. By sharing information across both communities and parks, our novel hierarchical model enables uncertainty-quantified estimates of abundance across multiple geographical (i.e., network, park) and taxonomic (i.e., community, guild, species) levels over a large spatiotemporal region. We found large variation in abundance trends across parks but not across bird guilds, suggesting that local forest condition might have a broad and consistent effect on the entire bird community within a given park. Research should target the three parks with overall decreasing trends in bird abundance to further identify what specific factors are driving observed declines across the bird community. Understanding how bird communities respond to local forest structure and other stressors (e.g., pest outbreaks, climate change) is crucial for informed and lasting management.


Assuntos
Aves , Florestas , Animais , Biodiversidade , Mudança Climática , Geografia , Parques Recreativos
3.
Proc Natl Acad Sci U S A ; 112(46): 14290-4, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26578774

RESUMO

Since its introduction to North America in 1999, West Nile virus (WNV) has had devastating impacts on native host populations, but to date these impacts have been difficult to measure. Using a continental-scale dataset comprised of a quarter-million birds captured over nearly two decades and a recently developed model of WNV risk, we estimated the impact of this emergent disease on the survival of avian populations. We find that populations were negatively affected by WNV in 23 of the 49 species studied (47%). We distinguished two groups of species: those for which WNV negatively impacted survival only during initial spread of the disease (n = 11), and those that show no signs of recovery since disease introduction (n = 12). Results provide a novel example of the taxonomic breadth and persistent impacts of this wildlife disease on a continental scale. Phylogenetic analyses further identify groups (New World sparrows, finches, and vireos) disproportionally affected by temporary or persistent WNV effects, suggesting an evolutionary dimension of disease risk. Identifying the factors affecting the persistence of a disease across host species is critical to mitigating its effects, particularly in a world marked by rapid anthropogenic change.


Assuntos
Doenças das Aves , Evolução Molecular , Filogenia , Febre do Nilo Ocidental , Vírus do Nilo Ocidental/genética , Animais , Doenças das Aves/epidemiologia , Doenças das Aves/genética , Doenças das Aves/virologia , Aves , Humanos , América do Norte/epidemiologia , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/genética , Febre do Nilo Ocidental/veterinária
4.
Ecology ; 104(4): e3973, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36688902

RESUMO

Understanding the spatial scaling of population stability is critical for informing conservation strategies. A recently proposed metric for quantifying how population stability varies across scales is the invariability-area relationship (IAR), but the underlying drivers shaping IARs remain unclear. Using 15-year records of 249 bird species in 1035 survey transects in North America, we derived the IAR for each species by calculating population temporal invariability at different spatial scales (i.e., number of routes) and investigated how species IARs were influenced by functional traits and environmental factors. We found that species with faster life history traits and reduced flight efficiency had higher IAR intercepts (i.e., locally more stable), whereas migratory species exhibited higher IAR slopes (i.e., a faster gain of stability with increasing spatial scale). In addition, spatial correlation in temperature and vegetation structure synchronized bird population dynamics over space and thus decreased IAR slopes. By demonstrating the joint influence of functional traits and environmental factors on bird population stability across scales, our results highlight the need for dynamic conservation strategies tailored to particular types of species in an era of global environmental changes.


Assuntos
Aves , Animais , América do Norte , Dinâmica Populacional
5.
Sci Total Environ ; 642: 679-689, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29909336

RESUMO

Many wild animals can be adversely affected by trace metals around point sources but little is known about the risks to birds across their ranges. Trace metals in the soil are ubiquitously, if heterogeneously distributed, across the world due to natural and anthropogenic sources. Here, we built, parameterized and applied a spatially explicit modelling framework to determine the risks of soil-associated metals to 30 invertebrate-consuming passerine species across their spatial distribution in England and Wales. The model uses a risk characterization approach to assess the risks of soil-associated metals. Various monitoring datasets were used as input parameters: soil metal concentrations in England and Wales, bird spatial distribution; bird diet, bioaccumulation and toxicity data were extracted from the literature. Our model highlights significant differences in toxicity risks from Cd, Cu, Pb and Zn across the UK distributions of different species; Pb and Zn posed risks to all species across most of species' distributions, with more localised risks to some species of conservation concern from Cd and Cu. No single taxa of invertebrate prey drove avian exposure to metal toxicity. Adults were found to be at higher risk from Pb and Zn toxicity across their distributions than nestlings. This risk was partially driven by diet, with age differences in diets identified. Our spatially explicit model allowed us to identify areas of each species' national distribution in which the population was at risk. Overall, we determined that for all species studied an average of 32.7 ±â€¯0.2%, 8.0 ±â€¯0.1%, 86.1 ±â€¯0.1% and 93.2 ±â€¯0.1% of the songbird spatial distributions in the UK were characterized at risk of Cd, Cu, Pb and Zn, respectively. Despite some limitations, our spatially explicit model helps in understanding the risks of metals to wildlife and provides an efficient method of prioritising areas, contaminants and species for environmental risk assessments. The model could be further evaluated using a targeted monitoring dataset of metal concentration in bird tissues. Our model can assess and communicate to stakeholders the potential risks of environmental contaminants to wildlife species at a national and potentially international scale.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais/metabolismo , Metais Pesados/metabolismo , Aves Canoras/metabolismo , Animais , Inglaterra , Medição de Risco , Solo/química , País de Gales
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA