Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Neurosci ; 43(11): 1871-1887, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36823038

RESUMO

Corticospinal neurons (CSN) are centrally required for skilled voluntary movement, which necessitates that they establish precise subcerebral connectivity with the brainstem and spinal cord. However, molecular controls regulating specificity of this projection targeting remain largely unknown. We previously identified that developing CSN subpopulations exhibit striking axon targeting specificity in the spinal white matter. These CSN subpopulations with segmentally distinct spinal projections are also molecularly distinct; a subset of differentially expressed genes between these distinct CSN subpopulations regulate differential axon projection targeting. Rostrolateral CSN extend axons exclusively to bulbar-cervical segments (CSNBC-lat), while caudomedial CSN (CSNmedial) are more heterogeneous, with distinct, intermingled subpopulations extending axons to either bulbar-cervical or thoraco-lumbar segments. Here, we report, in male and female mice, that Cerebellin 1 (Cbln1) is expressed specifically by CSN in medial, but not lateral, sensorimotor cortex. Cbln1 shows highly dynamic temporal expression, with Cbln1 levels in CSN highest during the period of peak axon extension toward thoraco-lumbar segments. Using gain-of-function experiments, we identify that Cbln1 is sufficient to direct thoraco-lumbar axon extension by CSN. Misexpression of Cbln1 in CSNBC-lat either by in utero electroporation, or by postmitotic AAV-mediated gene delivery, redirects these axons past their normal bulbar-cervical targets toward thoracic segments. Further, Cbln1 overexpression in postmitotic CSNBC-lat increases the number of CSNmedial axons that extend past cervical segments into the thoracic cord. Collectively, these results identify that Cbln1 functions as a potent molecular control over thoraco-lumbar CSN axon extension, part of an integrated network of controls over segmentally-specific CSN axon projection targeting.SIGNIFICANCE STATEMENT Corticospinal neurons (CSN) exhibit remarkable diversity and precision of axonal projections to targets in the brainstem and distinct spinal segments; the molecular basis for this targeting diversity is largely unknown. CSN subpopulations projecting to distinct targets are also molecularly distinguishable. Distinct subpopulations degenerate in specific motor neuron diseases, further suggesting that intrinsic molecular differences might underlie differential vulnerability to disease. Here, we identify a novel molecular control, Cbln1, expressed by CSN extending axons to thoraco-lumbar spinal segments. Cbln1 is sufficient, but not required, for CSN axon extension toward distal spinal segments, and Cbln1 expression is controlled by recently identified, CSN-intrinsic regulators of axon extension. Our results identify that Cbln1, together with other regulators, coordinates segmentally precise CSN axon targeting.


Assuntos
Axônios , Medula Espinal , Feminino , Masculino , Animais , Camundongos , Axônios/fisiologia , Medula Espinal/fisiologia , Neurônios/fisiologia , Neuritos , Proteínas do Tecido Nervoso/metabolismo , Precursores de Proteínas/metabolismo
2.
J Cell Sci ; 133(13)2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32546534

RESUMO

The role of two-pore channel type 2 (TPC2, encoded by tcpn2)-mediated Ca2+ release was recently characterized in zebrafish during establishment of the early spinal circuitry, one of the key events in the coordination of neuromuscular activity. Here, we extend our study to investigate the in vivo role of TPC2 in the regulation of caudal primary motor neuron (CaP) axon extension. We used a combination of TPC2 knockdown with a translation-blocking morpholino antisense oligonucleotide (MO), TPC2 knockout via the generation of a tpcn2dhkz1a mutant line of zebrafish using CRISPR/Cas9 gene-editing and pharmacological inhibition of TPC2 via incubation with bafilomycin A1 (an H+-ATPase inhibitor) or trans-ned-19 (an NAADP receptor antagonist), and showed that these treatments attenuated CaP Ca2+ signaling and inhibited axon extension. We also characterized the expression of an arc1-like transcript in CaPs grown in primary culture. MO-mediated knockdown of ARC1-like in vivo led to attenuation of the Ca2+ transients in the CaP growth cones and an inhibition of axon extension. Together, our new data suggest a link between ARC1-like, TPC2 and Ca2+ signaling during axon extension in zebrafish.


Assuntos
Canais de Cálcio , Peixe-Zebra , Animais , Axônios/metabolismo , Cálcio/metabolismo , Neurônios Motores/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
3.
Cell Mol Life Sci ; 78(7): 3443-3465, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33247761

RESUMO

During central nervous system (CNS) development, proper and timely induction of neurite elongation is critical for generating functional, mature neurons, and neuronal networks. Despite the wealth of information on the action of extracellular cues, little is known about the intrinsic gene regulatory factors that control this developmental decision. Here, we report the identification of Prox1, a homeobox transcription factor, as a key player in inhibiting neurite elongation. Although Prox1 promotes acquisition of early neuronal identity and is expressed in nascent post-mitotic neurons, it is heavily down-regulated in the majority of terminally differentiated neurons, indicating a regulatory role in delaying neurite outgrowth in newly formed neurons. Consistently, we show that Prox1 is sufficient to inhibit neurite extension in mouse and human neuroblastoma cell lines. More importantly, Prox1 overexpression suppresses neurite elongation in primary neuronal cultures as well as in the developing mouse brain, while Prox1 knock-down promotes neurite outgrowth. Mechanistically, RNA-Seq analysis reveals that Prox1 affects critical pathways for neuronal maturation and neurite extension. Interestingly, Prox1 strongly inhibits many components of Ca2+ signaling pathway, an important mediator of neurite extension and neuronal maturation. In accordance, Prox1 represses Ca2+ entry upon KCl-mediated depolarization and reduces CREB phosphorylation. These observations suggest that Prox1 acts as a potent suppressor of neurite outgrowth by inhibiting Ca2+ signaling pathway. This action may provide the appropriate time window for nascent neurons to find the correct position in the CNS prior to initiation of neurites and axon elongation.


Assuntos
Sinalização do Cálcio , Sistema Nervoso Central/patologia , Proteínas de Homeodomínio/metabolismo , Neuroblastoma/patologia , Crescimento Neuronal , Neurônios/patologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Células Cultivadas , Sistema Nervoso Central/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Neuroblastoma/metabolismo , Neurônios/metabolismo , Fosforilação , Transdução de Sinais , Proteínas Supressoras de Tumor/genética
4.
Arch Biochem Biophys ; 648: 53-59, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29678629

RESUMO

Cell adhesive biomaterials have been used for various cells in culture, especially for primary cultures of neurons. Here we examined laminin-111 and its active peptides conjugated to chitosan matrices (ChtMs) for primary culture of rat cortical neurons. Laminin-111 on poly-d-lysine substrate promoted neuronal cell attachment and differentiation. The biological activity of six active laminin-111-derived peptides was examined using a peptide-ChtM construct. When the syndecan-binding peptides, AG73 (RKRLQVQLSIRT, mouse laminin α1 chain 2719-2730) and C16 (KAFDITYVRLKF, laminin γ1 chain 139-150), were conjugated to chitosan, AG73-ChtM and C16-ChtM showed potent neuronal cell attachment activity and promoted axon extension by primary cultured rat cortical neurons. However, the remaining peptides, including integrin-binding peptides, did not show activity when conjugated to ChtM. AG73-ChtM and C16-ChtM also supported neuron survival for at least 4 weeks in serum-free medium without a glia feeder layer. These data suggest that AG73-ChtM and C16-ChtM are useful for primary cultures of central nervous system neurons and have a potential for use as functional biomaterials for tissue engineering in the central nervous system.


Assuntos
Encéfalo/citologia , Quitosana/química , Quitosana/farmacologia , Laminina/química , Neurônios/citologia , Neurônios/efeitos dos fármacos , Peptídeos/química , Sequência de Aminoácidos , Animais , Adesão Celular/efeitos dos fármacos , Camundongos , Neuritos/efeitos dos fármacos , Ratos
5.
J Neurosci ; 36(26): 7014-26, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27358458

RESUMO

UNLABELLED: Delivery of proteins and organelles to the growth cone during axon extension relies on anterograde transport by kinesin motors. Though critical for neural circuit development, the mechanisms of cargo-specific anterograde transport during axon extension are only starting to be explored. Cargos of particular importance for axon outgrowth are microtubule modifiers, such as SCG10 (Stathmin-2). SCG10 is expressed solely during axon extension, localized to growth cones, and essential for axon outgrowth; however, the mechanisms of SCG10 transport and activity were still debated. Using zebrafish mutants and in vivo imaging, we identified the Kif1B motor and its interactor Kif1 binding protein (KBP) as critical for SCG10 transport to axon growth cones and complete axon extension. Axon truncation in kbp(st23) mutants can be suppressed by SCG10 overexpression, confirming the direct relationship between decreased SCG10 levels and failed axon outgrowth. Live imaging revealed that the reduced levels of SCG10 in kbp(st23) mutant growth cones led to altered microtubule stability, defining the mechanistic basis of axon truncation. Thus, our data reveal a novel role for the Kif1B-KBP complex in the anterograde transport of SCG10, which is necessary for proper microtubule dynamics and subsequent axon extension. SIGNIFICANCE STATEMENT: Together, our data define the mechanistic underpinnings of failed axon outgrowth with loss of KBP or its associated motor, Kif1B. In addition, we provide conclusive evidence that this defect results from disruption of anterograde transport of SCG10. This is one of the first examples of a motor to be implicated in the essential transport of a discreet cargo necessary for axon extension. In addition, counter to previous in vitro and cell culture results, neither loss of the Kif1B motor nor KBP resulted in inhibition of mitochondrial transport. Altogether, our work links transport of SCG10 to the regulation of microtubule dynamics in the axon growth cone and enhances our understanding of this process during axon outgrowth.


Assuntos
Axônios/fisiologia , Cones de Crescimento/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento/genética , Cinesinas/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Transporte Proteico/genética , RNA Mensageiro/metabolismo , Estatmina/genética , Estatmina/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
6.
Neurobiol Dis ; 100: 75-86, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28088401

RESUMO

Oligophrenin-1 (OPHN1) is a Rho GTPase activating protein whose mutations cause X-linked intellectual disability (XLID). How loss of function of Ophn1 affects neuronal development is only partly understood. Here we have exploited adult hippocampal neurogenesis to dissect the steps of neuronal differentiation that are affected by Ophn1 deletion. We found that mice lacking Ophn1 display a reduction in the number of newborn neurons in the dentate gyrus. A significant fraction of the Ophn1-deficient newly generated neurons failed to extend an axon towards CA3, and showed an altered density of dendritic protrusions. Since Ophn1-deficient mice display overactivation of Rho-associated protein kinase (ROCK) and protein kinase A (PKA) signaling, we administered a clinically approved ROCK/PKA inhibitor (fasudil) to correct the neurogenesis defects. While administration of fasudil was not effective in rescuing axon formation, the same treatment completely restored spine density to control levels, and enhanced the long-term survival of adult-born neurons in mice lacking Ophn1. These results identify specific neurodevelopmental steps that are impacted by Ophn1 deletion, and indicate that they may be at least partially corrected by pharmacological treatment.


Assuntos
Hipocampo/metabolismo , Deficiência Intelectual/fisiopatologia , Neurogênese/fisiologia , Neurônios/metabolismo , Animais , Proteínas do Citoesqueleto/deficiência , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Proteínas Ativadoras de GTPase/deficiência , Proteínas Ativadoras de GTPase/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/deficiência , Proteínas Nucleares/metabolismo
7.
Biochem Biophys Res Commun ; 445(2): 357-62, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24513284

RESUMO

The LIM-homeodomain transcription factor Islet2a establishes neuronal identity in the developing nervous system. Our previous study showed that Islet2a function is crucial for extending peripheral axons of sensory neurons in zebrafish embryo. Overexpressing a dominant-negative form of Islet2a significantly reduced peripheral axon extension in zebrafish sensory neurons, implicating Islet2a in the gene regulation required for neurite formation or proper axon growth in developing sensory neurons. Based on this, we conducted systematic screening to isolate genes regulated by Islet2a and affecting the development of axon growth in embryonic zebrafish sensory neurons. The 26 genes selected included some encoding factors involved in neuronal differentiation, axon growth, cellular signaling, and structural integrity of neurons, as well as genes whose functions are not fully determined. We chose four representative candidates as possible Islet2a downstream functional targets (simplet, tppp, tusc5 and tmem59l) and analyzed their respective mRNA expressions in dominant-negative Islet2a-expressing embryos. They are not reported the involvement of axonal extension or their functions in neural cells. Finally, knockdown of these genes suggested their direct actual involvement in the extension of peripheral axons in sensory neurons.


Assuntos
Axônios/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas com Homeodomínio LIM/metabolismo , Células Receptoras Sensoriais/citologia , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Células Cultivadas , Proteínas com Homeodomínio LIM/genética , Células Receptoras Sensoriais/metabolismo , Fatores de Transcrição/genética , Ativação Transcricional , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
8.
Colloids Surf B Biointerfaces ; 239: 113967, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761494

RESUMO

The re-bridging of the deficient nerve is the main problem to be solved after the functional impairment of the peripheral nerve. In this study, a directionally aligned polycaprolactone/triiron tetraoxide (PCL/Fe3O4) fiber scaffolds were firstly prepared by electrospinning technique, and further then grafted with IKVAV peptide for regulating DRG growth and axon extension in peripheral nerve regeneration. The results showed that oriented aligned magnetic PCL/Fe3O4 composite scaffolds were successfully prepared by electrospinning technique and possessed good mechanical properties and magnetic responsiveness. The PCL/Fe3O4 scaffolds containing different Fe3O4 concentrations were free of cytotoxicity, indicating the good biocompatibility and low cytotoxicity of the scaffolds. The IKVAV-functionalized PCL/Fe3O4 scaffolds were able to guide and promote the directional extension of axons, the application of external magnetic field and the grafting of IKVAV peptides significantly further promoted the growth of DRGs and axons. The ELISA test results showed that the AP-10 F group scaffolds promoted the secretion of nerve growth factor (NGF) from DRG under a static magnetic field (SMF), thus promoting the growth and extension of axons. Importantly, the IKVAV-functionalized PCL/Fe3O4 scaffolds could significantly up-regulate the expression of Cntn2, PCNA, Sox10 and Isca1 genes related to adhesion, proliferation and magnetic receptor function under the stimulation of SMF. Therefore, IKVAV-functionalized PCL/Fe3O4 composite oriented scaffolds have potential applications in neural tissue engineering.


Assuntos
Poliésteres , Alicerces Teciduais , Animais , Poliésteres/química , Ratos , Alicerces Teciduais/química , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/química , Regeneração Nervosa/efeitos dos fármacos , Campos Magnéticos , Compostos Férricos/química , Compostos Férricos/farmacologia , Ratos Sprague-Dawley , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Células PC12
9.
Cell Rep ; 39(7): 110827, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35584680

RESUMO

Photoreceptors (PRs) are the primary visual sensory cells, and their loss leads to blindness that is currently incurable. Although cell replacement therapy holds promise, success is hindered by our limited understanding of PR axon growth during development and regeneration. Here, we generate retinal organoids from human pluripotent stem cells to study the mechanisms of PR process extension. We find that early-born PRs exhibit autonomous axon extension from dynamic terminals. However, as PRs age from 40 to 80 days of differentiation, they lose dynamic terminals on 2D substrata and in 3D retinal organoids. Interestingly, PRs without motile terminals are still capable of extending axons but only by process stretching via attachment to motile non-PR cells. Immobile PR terminals of late-born PRs have fewer and less organized actin filaments but more synaptic proteins compared with early-born PR terminals. These findings may help inform the development of PR transplantation therapies.


Assuntos
Células Fotorreceptoras , Células-Tronco Pluripotentes , Axônios , Diferenciação Celular , Humanos , Organoides/metabolismo , Células-Tronco Pluripotentes/metabolismo , Retina/metabolismo
10.
Mol Brain ; 12(1): 52, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138234

RESUMO

Mushroom body (MB) is a prominent structure essential for olfactory learning and memory in the Drosophila brain. The development of the MB involves the appropriate guidance of axon lobes and sister axon branches. Appropriate guidance that accurately shapes MB development requires the integration of various guidance cues provided by a series of cell types, which guide axons to reach their final positions within the MB neuropils. Netrins are axonal guidance molecules that are conserved regulators of embryonic nerve cord patterning. However, whether they contribute to MB morphogenesis has not yet been evaluated. Here, we find that Netrin-B (NetB) is highly expressed in the MB lobes, regulating lobe length through genetic interactions with the receptors Frazzled and Uncoordinated-5 from 24 h after pupal formation onwards. We observe that overexpression of NetB causes severe ß lobe fusion in the MB, which is similar to the MB defects seen in the Drosophila model of fragile X syndrome (FXS). Our results further show that fragile-X mental retardation protein FMRP inhibits the translational activity of human ortholog Netrin-1 (NTN1). Knock-down of NetB significantly rescues the MB defects and ameliorates deficits in the learning and memory in FXS model Drosophila. These results indicate a critical role for NetB in MB lobe extension and identify NetB as a novel target of FMRP which contributes to learning and memory.


Assuntos
Axônios/metabolismo , Corte , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Memória , Corpos Pedunculados/metabolismo , Fatores de Crescimento Neural/metabolismo , Animais , Modelos Animais de Doenças , Epistasia Genética , Mutação/genética , Fenótipo , Pupa/metabolismo
11.
Neurotoxicology ; 62: 130-137, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28645554

RESUMO

Netrins, chemotropic guidance cues, can guide the extension of serotonergic axons by binding to netrin receptors during neural development. However, little is known about whether disruption of netrin signaling is involved in the mechanisms by which organophosphorus pesticides affect serotonergic nervous system (SNS) development. In this study, we evaluated the effects of the pesticide monocrotophos (MCP) on the expression patterns of HpNetrin and its receptor neogenin as well as on the intracellular calcium ion (Ca2+) levels in Hemicentrotus pulcherrimus (sea urchin) by exposing fertilized embryos to 0, 0.01, 0.10, and 1.00mg/L MCP. The results showed that MCP disrupted HpNetrin and neogenin expression at different developmental stages in H. pulcherrimus and that Ca2+ appeared to be involved in the MCP-induced developmental neurotoxicity. Specifically, the lower concentrations of MCP elevated HpNetrin and neogenin transcription, resulting in higher intracellular Ca2+ levels during the early developmental stages in the sea urchin; this may affect netrin-directed cell migration/axon extension and subsequently disrupt serotonergic axon branching and synapse formation. In contrast, 1.00mg/L MCP exhibited an inhibitory effect on HpNetrin and neogenin transcription. This finding implies that the regulatory roles of these factors may be diminished during early development, thereby causing developmental defects in the sea urchin. Collectively, our results provide a basis for exploring the involvement of netrin and neogenin in the organophosphate-induced disruption of the SNS during development.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Inseticidas/farmacologia , Proteínas de Membrana/metabolismo , Monocrotofós/farmacologia , Netrinas/metabolismo , Actinas/metabolismo , Fatores Etários , Animais , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Larva , Proteínas de Membrana/genética , Netrinas/genética , RNA Mensageiro/metabolismo , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , Ouriços-do-Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA