RESUMO
Electronic health (eHealth) is a strategy to improve the physical and mental condition of a human, collecting daily physiological data and information from digital apparatuses. Body weight and blood pressure (BP) are the most popular and important physiological data. The goal of this study is to develop a minimal contact BP measurement method based on a commercial body weight-fat scale, capturing biometrics when users stand on it. The pulse transit time (PTT) is extracted from the ballistocardiogram (BCG) and impedance plethysmogram (IPG), measured by four strain gauges and four footpads of a commercial body weight-fat scale. Cuffless BP measurement using the electrocardiogram (ECG) and photoplethysmogram (PPG) serves as the reference method. The BP measured by a commercial BP monitor is considered the ground truth. Twenty subjects participated in this study. By the proposed model, the root-mean-square errors and correlation coefficients (r2s) of estimated systolic blood pressure and diastolic blood pressure are 7.3 ± 2.1 mmHg and 4.5 ± 1.8 mmHg, and 0.570 ± 0.205 and 0.284 ± 0.166, respectively. This accuracy level achieves the C grade of the corresponding IEEE standard. Thus, the proposed method has the potential benefit for eHealth monitoring in daily application.
Assuntos
Tecido Adiposo , Determinação da Pressão Arterial , Humanos , Pressão Sanguínea , Impedância Elétrica , Peso CorporalRESUMO
This paper describes a signal quality classification method for arm ballistocardiogram (BCG), which has the potential for non-invasive and continuous blood pressure measurement. An advantage of the BCG signal for wearable devices is that it can easily be measured using accelerometers. However, the BCG signal is also susceptible to noise caused by motion artifacts. This distortion leads to errors in blood pressure estimation, thereby lowering the performance of blood pressure measurement based on BCG. In this study, to prevent such performance degradation, a binary classification model was created to distinguish between high-quality versus low-quality BCG signals. To estimate the most accurate model, four time-series imaging methods (recurrence plot, the Gramain angular summation field, the Gramain angular difference field, and the Markov transition field) were studied to convert the temporal BCG signal associated with each heartbeat into a 448 × 448 pixel image, and the image was classified using CNN models such as ResNet, SqueezeNet, DenseNet, and LeNet. A total of 9626 BCG beats were used for training, validation, and testing. The experimental results showed that the ResNet and SqueezeNet models with the Gramain angular difference field method achieved a binary classification accuracy of up to 87.5%.
Assuntos
Algoritmos , Balistocardiografia , Balistocardiografia/métodos , Frequência Cardíaca/fisiologia , Artefatos , Movimento (Física)RESUMO
We introduce a new electroencephalogram (EEG) net, which will allow clinicians to monitor EEG while tracking head motion. Motion during MRI limits patient scans, especially of children with epilepsy. EEG is also severely affected by motion-induced noise, predominantly ballistocardiogram (BCG) noise due to the heartbeat. METHODS: The MotoNet was built using polymer thick film (PTF) EEG leads and motion sensors on opposite sides in the same flex circuit. EEG/motion measurements were made with a standard commercial EEG acquisition system in a 3 Tesla (T) MRI. A Kalman filtering-based BCG correction tool was used to clean the EEG in healthy volunteers. RESULTS: MRI safety studies in 3 T confirmed the maximum heating below 1 °C. Using an MRI sequence with spatial localization gradients only, the position of the head was linearly correlated with the average motion sensor output. Kalman filtering was shown to reduce the BCG noise and recover artifact-clean EEG. CONCLUSIONS: The MotoNet is an innovative EEG net design that co-locates 32 EEG electrodes with 32 motion sensors to improve both EEG and MRI signal quality. In combination with custom gradients, the position of the net can, in principle, be determined. In addition, the motion sensors can help reduce BCG noise.
Assuntos
Vacina BCG , Eletroencefalografia , Criança , Humanos , Imageamento por Ressonância Magnética , Movimento (Física) , ArtefatosRESUMO
A mattress-type non-influencing sleep apnea monitoring system was designed to detect sleep apnea-hypopnea syndrome (SAHS). The pressure signals generated during sleep on the mattress were collected, and ballistocardiogram (BCG) and respiratory signals were extracted from the original signals. In the experiment, wavelet transform (WT) was used to reduce noise and decompose and reconstruct the signal to eliminate the influence of interference noise, which can directly and accurately separate the BCG signal and respiratory signal. In feature extraction, based on the five features commonly used in SAHS, an innovative respiratory waveform similarity feature was proposed in this work for the first time. In the SAHS detection, the binomial logistic regression was used to determine the sleep apnea symptoms in the signal segment. Simulation and experimental results showed that the device, algorithm, and system designed in this work were effective methods to detect, diagnose, and assist the diagnosis of SAHS.
Assuntos
Síndromes da Apneia do Sono , Apneia Obstrutiva do Sono , Humanos , Arritmias Cardíacas , Polissonografia/métodos , Sono , Síndromes da Apneia do Sono/diagnóstico , Apneia Obstrutiva do Sono/diagnósticoRESUMO
Heart rate variability (HRV) features support several clinical applications, including sleep staging, and ballistocardiograms (BCGs) can be used to unobtrusively estimate these features. Electrocardiography is the traditional clinical standard for HRV estimation, but BCGs and electrocardiograms (ECGs) yield different estimates for heartbeat intervals (HBIs), leading to differences in calculated HRV parameters. This study examines the viability of using BCG-based HRV features for sleep staging by quantifying the impact of these timing differences on the resulting parameters of interest. We introduced a range of synthetic time offsets to simulate the differences between BCG- and ECG-based heartbeat intervals, and the resulting HRV features are used to perform sleep staging. Subsequently, we draw a relationship between the mean absolute error in HBIs and the resulting sleep-staging performances. We also extend our previous work in heartbeat interval identification algorithms to demonstrate that our simulated timing jitters are close representatives of errors between heartbeat interval measurements. This work indicates that BCG-based sleep staging can produce accuracies comparable to ECG-based techniques such that at an HBI error range of up to 60 ms, the sleep-scoring error could increase from 17% to 25% based on one of the scenarios we examined.
Assuntos
Vacina BCG , Balistocardiografia , Frequência Cardíaca/fisiologia , Eletrocardiografia/métodos , Fases do Sono/fisiologia , AlgoritmosRESUMO
In this work, we present a ballistocardiographic (BCG) system for the determination of heart and breath rates and activity of a user lying in bed. Our primary goal was to simplify the analog and digital processing usually required in these kinds of systems while retaining high performance. A novel sensing approach is proposed consisting of a white LED facing a digital light detector. This detector provides precise measurements of the variations of the light intensity of the incident light due to the vibrations of the bed produced by the subject's breathing, heartbeat, or activity. Four small springs, acting as a bandpass filter, connect the boards where the LED and the detector are mounted. Owing to the mechanical bandpass filtering caused by the compressed springs, the proposed system generates a BCG signal that reflects the main frequencies of the heartbeat, breathing, and movement of the lying subject. Without requiring any analog signal processing, this device continuously transmits the measurements to a microcontroller through a two-wire communication protocol, where they are processed to provide an estimation of the parameters of interest in configurable time intervals. The final information of interest is wirelessly sent to the user's smartphone by means of a Bluetooth connection. For evaluation purposes, the proposed system has been compared with typical BCG systems showing excellent performance for different subject positions. Moreover, applied postprocessing methods have shown good behavior for information separation from a single-channel signal. Therefore, the determination of the heart rate, breathing rate, and activity of the patient is achieved through a highly simplified signal processing without any need for analog signal conditioning.
Assuntos
Balistocardiografia , Humanos , Balistocardiografia/métodos , Frequência Cardíaca/fisiologia , Processamento de Sinais Assistido por Computador , SonoRESUMO
This paper presents a novel computational algorithm to estimate blood volume decompensation state based on machine learning (ML) analysis of multi-modal wearable-compatible physiological signals. To the best of our knowledge, our algorithm may be the first of its kind which can not only discriminate normovolemia from hypovolemia but also classify hypovolemia into absolute hypovolemia and relative hypovolemia. We realized our blood volume classification algorithm by (i) extracting a multitude of features from multi-modal physiological signals including the electrocardiogram (ECG), the seismocardiogram (SCG), the ballistocardiogram (BCG), and the photoplethysmogram (PPG), (ii) constructing two ML classifiers using the features, one to classify normovolemia vs. hypovolemia and the other to classify hypovolemia into absolute hypovolemia and relative hypovolemia, and (iii) sequentially integrating the two to enable multi-class classification (normovolemia, absolute hypovolemia, and relative hypovolemia). We developed the blood volume decompensation state classification algorithm using the experimental data collected from six animals undergoing normovolemia, relative hypovolemia, and absolute hypovolemia challenges. Leave-one-subject-out analysis showed that our classification algorithm achieved an F1 score and accuracy of (i) 0.93 and 0.89 in classifying normovolemia vs. hypovolemia, (ii) 0.88 and 0.89 in classifying hypovolemia into absolute hypovolemia and relative hypovolemia, and (iii) 0.77 and 0.81 in classifying the overall blood volume decompensation state. The analysis of the features embedded in the ML classifiers indicated that many features are physiologically plausible, and that multi-modal SCG-BCG fusion may play an important role in achieving good blood volume classification efficacy. Our work may complement existing computational algorithms to estimate blood volume compensatory reserve as a potential decision-support tool to provide guidance on context-sensitive hypovolemia therapeutic strategy.
Assuntos
Hemorragia , Dispositivos Eletrônicos Vestíveis , Algoritmos , Animais , Volume Sanguíneo/fisiologia , Hipovolemia/diagnóstico , Aprendizado de MáquinaRESUMO
Atrial fibrillation (AF) is the most common clinically significant arrhythmia; therefore, AF detection is crucial. Here, we propose a novel feature extraction method to improve AF detection performance using a ballistocardiogram (BCG), which is a weak vibration signal on the body surface transmitted by the cardiogenic force. In this paper, continuous time windows (CTWs) are added to each BCG segment and recurrence quantification analysis (RQA) features are extracted from each time window. Then, the number of CTWs is discussed and the combined features from multiple time windows are ranked, which finally constitute the CTW-RQA features. As validation, the CTW-RQA features are extracted from 4000 BCG segments of 59 subjects, which are compared with classical time and time-frequency features and up-to-date energy features. The accuracy of the proposed feature is superior, and three types of features are fused to obtain the highest accuracy of 95.63%. To evaluate the importance of the proposed feature, the fusion features are ranked using a chi-square test. CTW-RQA features account for 60% of the first 10 fusion features and 65% of the first 17 fusion features. It follows that the proposed CTW-RQA features effectively supplement the existing BCG features for AF detection.
Assuntos
Fibrilação Atrial , Balistocardiografia , Algoritmos , Fibrilação Atrial/diagnóstico , Vacina BCG , Eletrocardiografia , HumanosRESUMO
Flexible sensor arrays are widely used for wearable physiological signal recording applications. A high density sensor array requires the signal readout to be compatible with multiple channels. This paper presents a highly-integrated remote health monitoring system integrating a flexible pressure sensor array with a multi-channel wireless readout chip. The custom-designed chip features 64 voltage readout channels, a power management unit, and a wireless transceiver. The whole chip fabricated in a 65 nm complementary metal-oxide-semiconductor (CMOS) process occupies 3.7 × 3.7 mm2, and the core blocks consume 2.3 mW from a 1 V supply in the wireless recording mode. The proposed multi-channel system is validated by measuring the ballistocardiogram (BCG) and pulse wave, which paves the way for future portable remote human physiological signals monitoring devices.
Assuntos
Balistocardiografia , Semicondutores , Frequência Cardíaca , Humanos , Monitorização FisiológicaRESUMO
Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is a very promising non-invasive neuroimaging technique. However, EEG data obtained from the simultaneous EEG-fMRI are strongly influenced by MRI-related artefacts, namely gradient artefacts (GA) and ballistocardiogram (BCG) artefacts. When compared to the GA correction, the BCG correction is more challenging to remove due to its inherent variabilities and dynamic changes over time. The standard BCG correction (i.e., average artefact subtraction [AAS]), require detecting cardiac pulses from simultaneous electrocardiography (ECG) recording. However, ECG signals are also distorted and will become problematic for detecting reliable cardiac peaks. In this study, we focused on a beamforming spatial filtering technique to attenuate all unwanted source activities outside of the brain. Specifically, we applied the beamforming technique to attenuate the BCG artefact in EEG-fMRI, and also to recover meaningful task-based neural signals during an attentional network task (ANT) which required participants to identify visual cues and respond accurately. We analysed EEG-fMRI data in 20 healthy participants during the ANT, and compared four different BCG corrections (non-BCG corrected, AAS BCG corrected, beamforming + AAS BCG corrected, beamforming BCG corrected). We demonstrated that the beamforming approach did not only significantly reduce the BCG artefacts, but also significantly recovered the expected task-based brain activity when compared to the standard AAS correction. This data-driven beamforming technique appears promising especially for longer data acquisition of sleep and resting EEG-fMRI. Our findings extend previous work regarding the recovery of meaningful EEG signals by an optimized suppression of MRI-related artefacts.
Assuntos
Balistocardiografia/normas , Eletroencefalografia/normas , Neuroimagem Funcional/normas , Imageamento por Ressonância Magnética/normas , Adulto , Artefatos , Balistocardiografia/métodos , Eletroencefalografia/métodos , Feminino , Neuroimagem Funcional/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto JovemRESUMO
BACKGROUND: Atrial fibrillation (AF) represents the most common arrhythmia worldwide, related to increased risk of ischemic stroke or systemic embolism. It is critical to screen and diagnose AF for the benefits of better cardiovascular health in lifetime. The ECG-based AF detection, the gold standard in clinical care, has been restricted by the need to attach electrodes on the body surface. Recently, ballistocardiogram (BCG) has been investigated for AF diagnosis, which is an unobstructive and convenient technique to monitor heart activity in daily life. However, here is a lack of high-dimension representation and deep learning analysis of BCG. METHOD: Therefore, this paper proposes an attention-based multi-scale features fusion method by using BCG signal. The 1-D morphology feature extracted from Bi-LSTM network and 2-D rhythm feature extracted from reconstructed phase space are integrated by means of CNN network to improve the robustness of AF detection. To the best of our knowledge, this is the first study where the phase space trajectory of BCG is conducted. RESULTS: 2000 segments (AF and NAF) of BCG signals were collected from 59 volunteers suffering from paroxysmal AF in this survey. Compared to the classical time and frequency features and the state-of-the-art energy features with the popular machine learning classifiers, AF detection performance of the proposed method is superior, which has 0.947 accuracy, 0.935 specificity, 0.959 sensitivity, and 0.937 precision, for the same BCG dataset. The experimental results show that combined feature could excavate more potential characteristics, and the attention mechanism could enhance the pertinence for AF recognition. CONCLUSIONS: The proposed method can provide an innovative solution to capture the diverse scale descriptions of BCG and explore ways to involve the deep learning method to accurately screen AF in routine life.
Assuntos
Fibrilação Atrial/diagnóstico , Balistocardiografia , Aprendizado Profundo , Processamento de Sinais Assistido por Computador , HumanosRESUMO
Atrial fibrillation (AF) is the most common cardiac arrhythmia. It tends to cause multiple cardiac conditions, such as cerebral artery blockage, stroke, and heart failure. The morbidity and mortality of AF have been progressively increasing over the past few decades, which has raised widespread concern about unobtrusive AF detection in routine life. The up-to-date non-invasive AF detection methods include electrocardiogram (ECG) signals and cardiac dynamics signals, such as the ballistocardiogram (BCG) signal, the seismocardiogram (SCG) signal and the photoplethysmogram (PPG) signal. Cardiac dynamics signals can be collected by cushions, mattresses, fabrics, or even cameras, which is more suitable for long-term monitoring. Therefore, methods for AF detection by cardiac dynamics signals bring about extensive attention for recent research. This paper reviews the current unobtrusive AF detection methods based on the three cardiac dynamics signals, summarized as data acquisition and preprocessing, feature extraction and selection, classification and diagnosis. In addition, the drawbacks and limitations of the existing methods are analyzed, and the challenges in future work are discussed.
Assuntos
Fibrilação Atrial , Balistocardiografia , Acidente Vascular Cerebral , Fibrilação Atrial/diagnóstico , Eletrocardiografia , Coração , HumanosRESUMO
Hypertension is a chronic disease that kills 7.6 million people worldwide annually. A continuous blood pressure monitoring system is required to accurately diagnose hypertension. Here, a chair-shaped ballistocardiogram (BCG)-based blood pressure estimation system was developed with no sensors attached to users. Two experimental sessions were conducted with 30 subjects. In the first session, two-channel BCG and blood pressure data were recorded for each subject. In the second session, the two-channel BCG and blood pressure data were recorded after running on a treadmill and then resting on the newly developed system. The empirical mode decomposition algorithm was used to remove noise in the two-channel BCG, and the instantaneous phase was calculated by applying a Hilbert transform to the first intrinsic mode functions. After training a convolutional neural network regression model that predicts the systolic and diastolic blood pressures (SBP and DBP) from the two-channel BCG phase, the results of the first session (rest) and second session (recovery) were compared. The results confirmed that the proposed model accurately estimates the rapidly rising blood pressure in the recovery state. Results from the rest sessions satisfied the Association for the Advancement of Medical Instrumentation (AAMI) international standards. The standard deviation of the SBP results in the recovery session exceeded 0.7.
Assuntos
Balistocardiografia , Hipertensão , Pressão Sanguínea , Determinação da Pressão Arterial , Humanos , Hipertensão/diagnóstico , Redes Neurais de ComputaçãoRESUMO
This paper has two objectives: the first is to generate two binary flags to indicate useful frames permitting the measurement of cardiac and respiratory rates from Ballistocardiogram (BCG) signals-in fact, human body activities during measurements can disturb the BCG signal content, leading to difficulties in vital sign measurement; the second objective is to achieve refined BCG signal segmentation according to these activities. The proposed framework makes use of two approaches: an unsupervised classification based on the Gaussian Mixture Model (GMM) and a supervised classification based on K-Nearest Neighbors (KNN). Both of these approaches consider two spectral features, namely the Spectral Flatness Measure (SFM) and Spectral Centroid (SC), determined during the feature extraction step. Unsupervised classification is used to explore the content of the BCG signals, justifying the existence of different classes and permitting the definition of useful hyper-parameters for effective segmentation. In contrast, the considered supervised classification approach aims to determine if the BCG signal content allows the measurement of the heart rate (HR) and the respiratory rate (RR) or not. Furthermore, two levels of supervised classification are used to classify human-body activities into many realistic classes from the BCG signal (e.g., coughing, holding breath, air expiration, movement, et al.). The first one considers frame-by-frame classification, while the second one, aiming to boost the segmentation performance, transforms the frame-by-frame SFM and SC features into temporal series which track the temporal variation of the measures of the BCG signal. The proposed approach constitutes a novelty in this field and represents a powerful method to segment BCG signals according to human body activities, resulting in an accuracy of 94.6%.
RESUMO
Sleep disruption from causes, such as changes in lifestyle, stress from aging, family issues, or life pressures are a growing phenomenon that can lead to serious health problems. As such, sleep disorders need to be identified and addressed early on. In recent years, studies have investigated sleep patterns through body movement information collected by wristwatch-type devices or cameras. However, these methods capture only the individual's awake and sleep states and lack sufficient information to identify specific sleep stages. The aim of this study was to use a 3-axis accelerometer attached to an individual's head to capture information that can identify three specific sleep stages: rapid eye movement (REM) sleep, light sleep, and deep sleep. These stages are measured by heart rate features captured by a ballistocardiogram and body movement. The sleep experiment was conducted for two nights among eight healthy adult men. According to the leave-one-out cross-validation results, the F-scores were: awake 76.6%, REM sleep 52.7%, light sleep 78.2%, and deep sleep 67.8%. The accuracy was 74.6% for the four estimates. This proposed measurement system was able to estimate the sleep stages with high accuracy simply by using the acceleration in the individual's head.
Assuntos
Fases do Sono , Sono REM , Aceleração , Adulto , Humanos , Masculino , Sono , VigíliaRESUMO
Continuous blood pressure (BP) monitoring is important for patients with hypertension. However, BP measurement with a cuff may be cumbersome for the patient. To overcome this limitation, various studies have suggested cuffless BP estimation models using deep learning algorithms. A generalized model should be considered to decrease the training time, and the model reproducibility should be taken into account in multi-day scenarios. In this study, a BP estimation model with a bidirectional long short-term memory network is proposed. The features are extracted from the electrocardiogram, photoplethysmogram, and ballistocardiogram. The leave-one-subject-out (LOSO) method is incorporated to generalize the model and fine-tuning is applied. The model was evaluated using one-day and multi-day tests. The proposed model achieved a mean absolute error (MAE) of 2.56 and 2.05 mmHg for the systolic and diastolic BP (SBP and DBP), respectively, in the one-day test. Moreover, the results demonstrated that the LOSO method with fine-tuning was more compatible in the multi-day test. The MAE values of the model were 5.82 and 5.24 mmHg for the SBP and DBP, respectively.
Assuntos
Memória de Curto Prazo , Fotopletismografia , Pressão Sanguínea , Determinação da Pressão Arterial , Humanos , Análise de Onda de Pulso , Reprodutibilidade dos TestesRESUMO
Blood pressure (BP) is a vital sign that provides fundamental health information regarding patients. Continuous BP monitoring is important for patients with hypertension. Various studies have proposed cuff-less BP monitoring methods using pulse transit time. We propose an end-to-end deep learning architecture using only raw signals without the process of extracting features to improve the BP estimation performance using the attention mechanism. The proposed model consisted of a convolutional neural network, a bidirectional gated recurrent unit, and an attention mechanism. The model was trained by a calibration-based method, using the data of each subject. The performance of the model was compared to the model that used each combination of the three signals, and the model with the attention mechanism showed better performance than other state-of-the-art methods, including conventional linear regression method using pulse transit time (PTT). A total of 15 subjects were recruited, and electrocardiogram, ballistocardiogram, and photoplethysmogram levels were measured. The 95% confidence interval of the reference BP was [86.34, 143.74] and [51.28, 88.74] for systolic BP (SBP) and diastolic BP (DBP), respectively. The R 2 values were 0.52 and 0.49, and the mean-absolute-error values were 4.06 ± 4.04 and 3.33 ± 3.42 for SBP and DBP, respectively. In addition, the results complied with global standards. The results show the applicability of the proposed model as an analytical metric for BP estimation.
Assuntos
Pressão Sanguínea/fisiologia , Aprendizado Profundo , Algoritmos , Balistocardiografia , Eletrocardiografia , Humanos , Modelos Lineares , Redes Neurais de Computação , Análise de Onda de Pulso , Processamento de Sinais Assistido por ComputadorRESUMO
Continuous heart monitoring is essential for early detection and diagnosis of cardiovascular diseases, which are key factors for the evaluation of health status in the general population. Therefore, in the future, it will be increasingly important to develop unobtrusive and transparent cardiac monitoring technologies for the population. The possible approaches are the development of wearable technologies or the integration of sensors in daily-life objects. We developed a smart bed for monitoring cardiorespiratory functions during the night or in the case of continuous monitoring of bedridden patients. The mattress includes three accelerometers for the estimation of the ballistocardiogram (BCG). BCG signal is generated due to the vibrational activity of the body in response to the cardiac ejection of blood. BCG is a promising technique but is usually replaced by electrocardiogram due to the difficulty involved in detecting and processing the BCG signals. In this work, we describe a new algorithm for heart parameter extraction from the BCG signal, based on a moving auto-correlation sliding-window. We tested our method on a group of volunteers with the simultaneous co-registration of electrocardiogram (ECG) using a single-lead configuration. Comparisons with ECG reference signals indicated that the algorithm performed satisfactorily. The results presented demonstrate that valuable cardiac information can be obtained from the BCG signal extracted by low cost sensors integrated in the mattress. Thus, a continuous unobtrusive heart-monitoring through a smart bed is now feasible.
Assuntos
Acelerometria/instrumentação , Balistocardiografia , Frequência Cardíaca , Processamento de Sinais Assistido por Computador , Eletrocardiografia , Coração , HumanosRESUMO
Electroencephalography (EEG) recordings performed in magnetic resonance imaging (MRI) scanners are affected by complex artifacts caused by heart function, often termed pulse artifacts (PAs). PAs can strongly compromise EEG data quality, and remain an open problem for EEG-fMRI. This study investigated the properties and mechanisms of PA variability across heartbeats, which has remained largely unaddressed to date, and evaluated its impact on PA correction approaches. Simultaneous EEG-fMRI was performed at 7T on healthy participants at rest or under visual stimulation, with concurrent recordings of breathing and cardiac activity. PA variability was found to contribute to EEG variance with more than 500 µV2 at 7T, which extrapolates to 92 µV2 at 3T. Clustering analyses revealed that PA variability not only is linked to variations in head position/orientation, as previously hypothesized, but also, and more importantly, to the respiratory cycle and to heart rate fluctuations. The latter mechanisms are associated to short-timescale variability (even across consecutive heartbeats), and their importance varied across EEG channels. In light of this PA variability, three PA correction techniques were compared: average artifact subtraction (AAS), optimal basis sets (OBS), and an approach based on K-means clustering. All methods allowed the recovery of visual evoked potentials from the EEG data; nonetheless, OBS and K-means tended to outperform AAS, likely due to the inability of the latter in modeling short-timescale variability. Altogether, these results offer novel insights into the dynamics and underlying mechanisms of the pulse artifact, with important consequences for its correction, relevant to most EEG-fMRI applications.
Assuntos
Artefatos , Eletroencefalografia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Pulso Arterial , Adulto , Feminino , Humanos , Masculino , Adulto JovemRESUMO
This study investigates the potential of the limb ballistocardiogram (BCG) for unobtrusive estimation of cardiovascular (CV) parameters. In conjunction with the reference CV parameters (including diastolic, pulse, and systolic pressures, stroke volume, cardiac output, and total peripheral resistance), an upper-limb BCG based on an accelerometer embedded in a wearable armband and a lower-limb BCG based on a strain gauge embedded in a weighing scale were instrumented simultaneously with a finger photoplethysmogram (PPG). To standardize the analysis, the more convenient yet unconventional armband BCG was transformed into the more conventional weighing scale BCG (called the synthetic weighing scale BCG) using a signal processing procedure. The characteristic features were extracted from these BCG and PPG waveforms in the form of wave-to-wave time intervals, wave amplitudes, and wave-to-wave amplitudes. Then, the relationship between the characteristic features associated with (i) the weighing scale BCG-PPG pair and (ii) the synthetic weighing scale BCG-PPG pair versus the CV parameters, was analyzed using the multivariate linear regression analysis. The results indicated that each of the CV parameters of interest may be accurately estimated by a combination of as few as two characteristic features in the upper-limb or lower-limb BCG, and also that the characteristic features recruited for the CV parameters were to a large extent relevant according to the physiological mechanism underlying the BCG.