RESUMO
Cognitive deficits are the main outcome of neurological disorders whose occurrence has risen over the past three decades. Although there are some pharmacologic approaches approved for managing neurological disorders, it remains largely ineffective. Hence, exploring novel nature-based nutraceuticals is a pressing need to alleviate the results of neurodegenerative diseases, such as Alzheimer's disease (AD) and other neurodegenerative disorders. Some triterpenoids and their derivates can be considered potential therapeutics against neurological disorders due to their neuroprotective and cognitive-improving effects. Betulin (B), betulinic acid (BA), and ursolic acid (UA) are pentacyclic triterpenoid compounds with a variety of biological activities, including antioxidative, neuroprotective and anti-inflammatory properties. This review focuses on the therapeutic efficacy and probable molecular mechanisms of triterpenoids in damage prevention to neurons and restoring cognition in neurodegenerative diseases. Considering few studies on this concept, the precise mechanisms that mediate the effect of these compounds in neurodegenerative disorders have remained unknown. The findings can provide sufficient information about the advantages of these compounds against neurodegenerative diseases.
Assuntos
Doenças Neurodegenerativas , Triterpenos , Humanos , Triterpenos/uso terapêutico , Triterpenos/farmacologia , Ácido Ursólico , Triterpenos Pentacíclicos , Ácido Betulínico , Doenças Neurodegenerativas/tratamento farmacológicoRESUMO
Worldwide, cervical cancer (CCa) is a major killer of women. As the conventional drugs used to treat cervical cancer are expensive and expose severe side effects, there is a growing demand to search for novel modifications. Therefore, in the current investigation employing a bioinformatic approach, we explored triterpenoids for their anti-cancer efficacy by targeting cervical cancer epigenetic proteins, namely DNMT3A, HDAC4, and KMT2C. The study utilized molecular docking, ADMET assay, Molecular Dynamic simulation, and DFT calculation to unveil Betulin (BE) as the potential lead compound. Comparative analysis with that standard drug indicated that BE has a better glide score with the target protein KM2TC (- 9.893 kcal/mol), HDAC4 (- 9.720 kcal/mol), and DNMT3A (- 7.811 kcal/mol), which depicts that BE could be a potent inhibitor of these three epigenetic proteins and exhibits favorable pharmacokinetic, pharmacodynamics and toxicity properties. Molecular Dynamics simulation revealed noteworthy structural stability and compactness. DFT analysis revealed higher molecular activity of BE and showed the most increased kinetic stability (δE = 0.254647 eV). Further, we employed In vitro analysis through MTT assay and found that BE has IC50 of 15 µg/ml. In conclusion, BE can potentially treat CCa upon further investigations using in vivo models for better understanding.
RESUMO
Muscle contusion is an injury to muscle fibers and connective tissues. It commonly happens in impact events, and could result in pain, swelling, and limited range of motion. Diclofenac is one of commonly used nonsteroidal anti-inflammatory drugs to alleviate pain and inflammation after injury. However, it can potentially cause some side effects including gastrointestinal complications and allergy. Betulin is a lupine-type pentacyclic triterpenoid. It is showed to have valuable pharmacological effects, but the physiological effect of betulin on muscle contusion has not been reported. This study aimed to explore the therapeutic effects of betulin on muscle contusion that produced by the drop-mass method in mice. C57BL/6 mice were randomly assigned to control (no injury), only drop-mass injury (Injury), diclofenac treatment (Injury+diclofenac), and betulin treatment (Injury+betulin) groups. Injury was executed on the gastrocnemius of the right hind limb, and then phosphate-buffered saline (PBS), diclofenac, or betulin were oral gavage administrated respectively for 7 days. Results revealed that betulin significantly restored motor functions based on locomotor activity assessments, rota-rod test, and footprints analysis. Betulin also attenuated serum creatine kinase (CK) and lactate dehydrogenase (LDH) levels after muscle injury. Neutrophil infiltration was alleviated and desmin levels were increased after betulin treatment. Our data demonstrated that betulin attenuated muscle damage, alleviated inflammatory response, improved muscle regeneration, and restored motor functions after muscle contusion. Altogether, betulin may be a potential compound to accelerate the repair of injured muscle.
Assuntos
Contusões , Diclofenaco , Camundongos , Animais , Diclofenaco/uso terapêutico , Camundongos Endogâmicos C57BL , Contusões/tratamento farmacológico , Músculo Esquelético/lesões , Modelos Animais de DoençasRESUMO
Type 2 diabetes is characterized by hyperglycemia and a relative loss of ß-cell function. Our research investigated the antidiabetic potential of betulin, a pentacyclic triterpenoid found primarily in birch bark and, intriguingly, in a few marine organisms. Betulin has been shown to possess diverse biological activities, including antioxidant and antidiabetic activities; however, no studies have fully explored the effects of betulin on the pancreas and pancreatic islets. In this study, we investigated the effect of betulin on streptozotocin-nicotinamide (STZ)-induced diabetes in female Wistar rats. Betulin was prepared as an emulsion, and intragastric treatments were administered at doses of 20 and 50 mg/kg for 28 days. The effect of treatment was assessed by analyzing glucose parameters such as fasting blood glucose, hemoglobin A1C, and glucose tolerance; hepatic and renal biomarkers; lipid peroxidation; antioxidant enzymes; immunohistochemical analysis; and hematological indices. Administration of betulin improved the glycemic response and decreased α-amylase activity in diabetic rats, although insulin levels and homeostatic model assessment for insulin resistance (HOMA-IR) scores remained unchanged. Furthermore, betulin lowered the levels of hepatic biomarkers (aspartate aminotransferase, alanine aminotransferase, and alpha-amylase activities) and renal biomarkers (urea and creatine), in addition to improving glutathione levels and preventing the elevation of lipid peroxidation in diabetic animals. We also found that betulin promoted the regeneration of ß-cells in a dose-dependent manner but did not have toxic effects on the pancreas. In conclusion, betulin at a dose of 50 mg/kg exerts a pronounced protective effect against cytolysis, diabetic nephropathy, and damage to the acinar pancreas and may be a potential treatment option for diabetes.
Assuntos
Ácido Betulínico , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratos , Feminino , Animais , Antioxidantes/uso terapêutico , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Ratos Wistar , Estreptozocina/efeitos adversos , Diabetes Mellitus Experimental/induzido quimicamente , Glicemia , Extratos Vegetais/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/efeitos adversos , Glucose/efeitos adversos , Biomarcadores , alfa-AmilasesRESUMO
This study aimed to create new composite materials based on diatomite-a non-organic porous compound-through its surface modification with bioactive organic compounds, both synthetic and natural. Chloramphenicol, tetrahydroxymethylglycoluril and betulin were used as modifying substances. Composite materials were obtained by covering the diatomite surface with bioactive substance compounds as a solution and material dispersion in it. The materials were characterized by IR spectroscopy, SEM and X-ray photoelectron spectroscopy. For the biocomposites, the hemolytic effect, plasma proteins' adsorption on the surface and the antibacterial activity of the obtained materials were studied. Results show that the obtained materials are promising for medicine and agriculture.
Assuntos
Antibacterianos , Cloranfenicol , Antibacterianos/farmacologia , Terra de Diatomáceas/farmacologia , Adsorção , Materiais Biocompatíveis/farmacologiaRESUMO
BACKGROUND: The Pickering emulsion delivery technique is widely acknowledged for its efficacy in serving as a carrier that can encapsulate functional components effectively. Previous studies have shown significant differences in the stability of Pickering emulsions composed of different oil phases and in the bioaccessibility of the encapsulated functional ingredients. This study therefore investigated the effects of different carrier oils in the betulin self-stabilized water-in-oil (W/O) Pickering emulsion on the stability of the emulsion and bioaccessibility of betulin. RESULTS: The results showed that the oil type was one of the main factors affecting the stability of the emulsion. Palm oil and coconut oil provided better storage stability and centrifugal stability due to the high saturated fatty acid content. The bioavailability of betulin correlated significantly with the composition and characteristics of fatty acids in carrier oils. Carrier oils rich in low-saturation long-chain fatty acids tended to release more free fatty acids (FFAs), thus forming larger and more mixed micelles with stronger swelling and dissolution ability, resulting in a relatively high bioaccessibility of betulin. In contrast, the bioaccessibility of betulin in the emulsion prepared by coconut oil (with high saturated fatty acid content) was relatively low (1.17%). CONCLUSION: The results of this study indicate that selecting an appropriate carrier oil is important for the design of self-stabilized W/O Pickering emulsions to improve the bioaccessibility of betulin and other lipophilic bioactivities effectively. © 2024 Society of Chemical Industry.
RESUMO
Psoriasis is a complex and persistent autoimmune skin disease. The present research focused on the therapeutic evaluation of betulin-loaded nanostructured lipid carriers (BE-NLCs) towards managing psoriasis. The BE-NLCs were synthesized using the emulsification cum solidification method, exhibiting a spherical shape with a particle size of 183.5±1.82nm and a narrow size distribution window (PDI: 0.142±0.05). A high zeta potential -38.64±0.05mV signifies the relative stability of the nano-dispersion system. BE-NLCs show a drug loading and entrapment efficiency of 47.35±3.25% and 87.8±7.86%, respectively. In vitro release study, BE NLCs show a cumulative percentage release of 90.667±5.507% over BE-sol (57.334±5.03%) and BD-oint (42±4.58%) for 720min. In an ex vivo 24-h permeation study, % cumulative amount permeated per cm2 was found to be 55.667±3.33% from BE-NLCs and 32.012±3.26% from BE-sol, demonstrating a better permeability of 21.66% when compared to the standard formulation BD-oint. The in vivo anti-psoriatic activity in the IMQ-induced model shows topical application of BE-sol, BE-NLCs, and BD-oint resulted in recovery rates of 56%, 82%, and 65%, respectively, based on PASI (Psoriasis Area and Severity Index) score. Notably, BE-NLCs demonstrated a more significant reduction in spleen mass, indicating attenuation of the local innate immune system in psoriatic mice. Reductions in TNF-α, IL-6, and IL-17 levels were observed in both BE-sol and BE-NLCs groups compared to the disease control (DC) group, with BE-NLCs exhibiting superior outcomes (74.05%, 44.76%, and 49.26% reduction, respectively). Soy lecithin and squalene-based NLCs could be better carrier system for the improvement of the therapeutic potential of BE towards management of psoriasis.
Assuntos
Ácido Betulínico , Nanoestruturas , Psoríase , Camundongos , Animais , Imiquimode/efeitos adversos , Portadores de Fármacos/uso terapêutico , Psoríase/tratamento farmacológico , Lipídeos , Tamanho da PartículaRESUMO
The hemocompatibility of arabinogalactan, betulin and its derivatives was evaluated in vitro and samples suitable for creation of nanostructures or materials in contact with blood were selected. The prospects of arabinogalactan as a component of the construct (nanostructure) for drug delivery are due to the fact that it did not affect blood/plasma coagulation (at concentrations of 0.0033-3.333 mg/ml and 0.00465-4.65 mg/ml, respectively), platelet aggregation (0.00182-0.182 mg/ml), and demonstrated the degree of erythrocyte hemolysis less than 3%. Sodium salt of betulin monosulfate, diarginine salt of betulin disulfate (up to 0.465 mg/ml), and especially betulin and allobetulin formate with procoagulant properties (degree of hemolysis less than 2%) can be used to create a material, for example, sponge, gel, active against blood coagulation.
Assuntos
Coagulação Sanguínea , Galactanos , Hemólise , Agregação Plaquetária , Triterpenos , Triterpenos/química , Triterpenos/farmacologia , Hemólise/efeitos dos fármacos , Galactanos/química , Galactanos/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Teste de Materiais , Humanos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Eritrócitos/efeitos dos fármacos , Animais , Ácido BetulínicoRESUMO
BACKGROUND: Esophageal stenosis is a troublesome complication after circumferential ESD. This study examined the efficacy of betulin gel in preventing esophageal stenosis after ESD in a porcine model. METHODS: Twelve pigs were randomized to betulin group and control group evenly. At the distal esophagus, circumferential ESD was performed in all animals. In the betulin group, betulin gel was applied at days 1, 3, and 7. Endoscopy examination was performed at day 3, 1 week, 2 weeks, and 4 weeks post-ESD. Then pigs were killed for macroscopic and histologic esophageal evaluation. RESULTS: The rate of esophageal stricture was lower in the betulin group (53.3 ± 12.5% vs 88.3% ± 2.9, p = 0.02). Betulin-treated pigs had lower dysphagia score (2.0 ± 0 vs 3.3 ± 0.5, p < 0.001), less weight loss (11.78% ± 2.16 vs 15.85% ± 3.63, p = 0.04), and better passability of the open and closed biopsies forceps (83.33% vs. 0%, p = 0.015, and 100% vs. 0%, p = 0.002) 4 weeks post-ESD. Histologically, better re-epithelization (63.2 ± 10.7 mm vs 22.8 ± 10.1 mm, p < 0.001), slighter submucosal fibrosis (0.95 ± 0.17 mm vs 2.32 ± 0.48 mm, p = 0.002), lower muscularis propria damage score (1 vs 3, p < 0.001), and less inflammatory cells (307 vs 675 per high-power field, p = 0.002) were noted in the betulin group. The expression levels of TGF-ß1, collagen i, collagen III, and α-SMA were significantly lower in the betulin group compared to the control group (p < 0.05). CONCLUSIONS: Betulin gel shows promise in reducing fibrosis, enhancing repair, and preventing esophageal stricture after ESD, suggesting a potential new strategy for prevention.
RESUMO
Betulin derivatives are proposed to serve as an alternative to the drugs already established in oncologic treatment. Drug-induced nephrotoxicity leading to acute kidney injury frequently accompanies cancer treatment, and thus there is a need to research the effects of betulin derivatives on renal cells. The objective of our study was to assess the influence of the betulin derivatives 28-propynylobetulin (EB5) and 29-diethoxyphosphoryl-28-propynylobetulin (ECH147) on the expression of TGFß1, BMP2 and GDF15 in renal proximal tubule epithelial cells (RPTECs) cultured in vitro. The changes in mRNA expression and copy numbers were assessed using real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) and the standard curve method, respectively. An enzyme-linked immunosorbent assay (ELISA) was used to evaluate the effect of the betulin derivatives on the protein concentration in the culture media's supernatant. The assessment of the betulin derivatives' influence on gene expression demonstrated that the mRNA level and protein concentration did not always correlate with each other. Each of the tested compounds affected the mRNA expression. The RT-qPCR analyses showed that EB5 and ECH147 induced effects similar to those of betulin or cisplatin and resulted in a decrease in the mRNA copy number of all the analyzed genes. The ELISA demonstrated that EB5 and ECH147 elevated the protein concentration of TGFß1 and GDF15, while the level of BMP2 decreased. The concentration of the derivatives used in the treatment was crucial, but the effects did not always exhibit a simple linear dose-dependent relationship. Betulin and its derivatives, EB5 and ECH147, influenced the gene expression of TGFß1, BMP2 and GDF15 in the renal proximal tubule epithelial cells. The observed effects raise the question of whether treatment with these compounds could promote the development of renal fibrosis.
RESUMO
Lenvatinib has become the first-line therapy in advanced hepatocellular carcinoma (HCC), but its efficacy is still limited because of the inevitable development of resistance. It has been reported that cellular cholesterol levels are associated with tyrosine kinase inhibitor (TKI) efficacy. Here, we show that betulin, a sterol regulatory element-binding protein 2 (SREBP2) inhibitor, markedly enhances the anti-tumor effect of lenvatinib in HCC both in vitro and in vivo. Our results also show that the combination treatment of lenvatinib and betulin synergistically inhibits the proliferation and clonogenicity of HCC cells. The mRNA and protein expressions of IL-1ß are markedly decreased in HCC cells treated with betulin, while the sensitivity of HCC cells to lenvatinib is enhanced. Moreover, we find that the knockdown of IL-1ß also enhances the efficacy of lenvatinib, and recombinant IL-1ß protein rescues cell viability, which is reduced by lenvatinib in HCC cells. Further mechanistic studies indicate that betulin decreases the level of IL-1ß in HCC cells by inhibiting the mTOR signaling pathway. Finally, the growth of the tumors in xenograft mouse models subjected to combination treatment is significantly suppressed. In summary, our study reveals that the SREBP2 inhibitor betulin sensitizes hepatocellular carcinoma to lenvatinib by inhibiting the mTOR/IL-1ß pathway, which may be a promising therapeutic strategy for patients with HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proliferação de Células , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular TumoralRESUMO
Due to the incidence of ovarian cancer (OC) and the limitations of available therapeutic strategies, it is necessary to search for novel therapeutic solutions. The aim of this study was to evaluate the cytotoxic effect of betulin 1 and its propynoyl derivatives 2-6 against ovarian cancer cells (SK-OV-3, OVCAR-3) and normal myofibroblasts (18Co). Paclitaxel was used as the reference compound. The propynoyl derivatives 2-6 exhibited stronger antiproliferative and cytotoxic activities compared to betulin 1. In both ovarian cancer cell lines, the most potent compound was 28-propynoylbetulin 2. In the case of compound 2, the calculated IC50 values were 0.2 µM for the SK-OV-3 cells and 0.19 µM for the OVCAR-3 cells. Under the same culture conditions, the calculated IC50 values for compound 6 were 0.26 µM and 0.59 µM, respectively. It was observed that cells treated with compounds 2 and 6 caused a decrease in the potential of the mitochondrial membrane and a significant change in cell morphology. Betulin 1, a diol from the group of pentacyclic triterpenes, has a confirmed wide spectrum of biological effects, including a significant anticancer effect. It is characterized by low bioavailability, which can be improved by introducing changes to its structure. The results showed that chemical modifications of betulin 1 only at position C-28 with the propynoyl group (compound 2) and additionally at position C-3 with the phosphate group (compound 3) or at C-29 with the phosphonate group (compound 6) allowed us to obtain compounds with greater cytotoxic activity than their parent compounds, which could be used to develop novel therapeutic systems effective in the treatment of ovarian cancer.
Assuntos
Antineoplásicos , Neoplasias Ovarianas , Triterpenos , Humanos , Feminino , Apoptose , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Triterpenos/farmacologia , Triterpenos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células , Ensaios de Seleção de Medicamentos AntitumoraisRESUMO
The continuous emergence of SARS-CoV-2 variants has led to a protracted global COVID-19 pandemic with significant impacts on public health and global economy. While there are currently available SARS-CoV-2 vaccines and therapeutics, most of the FDA-approved antiviral agents directly target viral proteins. However, inflammation is the initial immune pathogenesis induced by SARS-CoV-2 infection, there is still a need to find additional agents that can control the virus in the early stages of infection to alleviate disease progression for the next pandemic. Here, we find that both the spike protein and its receptor CD147 are crucial for inducing inflammation by SARS-CoV-2 in THP-1 monocytic cells. Moreover, we find that 3-epi-betulin, isolated from Daphniphyllum glaucescens, reduces the level of proinflammatory cytokines induced by SARS-CoV-2, consequently resulting in a decreased viral RNA accumulation and plaque formation. In addition, 3-epi-betulin displays a broad-spectrum inhibition of entry of SARS-CoV-2 pseudoviruses, including Alpha (B.1.1.7), Eplison (B.1.429), Gamma (P1), Delta (B.1.617.2) and Omicron (BA.1). Moreover, 3-epi-betulin potently inhibits SARS-CoV-2 infection with an EC50 of <20 µM in Calu-3 lung epithelial cells. Bioinformatic analysis reveals the chemical interaction between the 3-epi-betulin and the spike protein, along with the critical amino acid residues in the spike protein that contribute to the inhibitory activity of 3-epi-betulin against virus entry. Taken together, our results suggest that 3-epi-betulin exhibits dual effect: it reduces SARS-CoV-2-induced inflammation and inhibits virus entry, positioning it as a potential antiviral agent against SARS-CoV-2.
Assuntos
COVID-19 , Daphniphyllum , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , Pandemias , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus , Antivirais/farmacologia , Inflamação/tratamento farmacológicoRESUMO
This scientific work presents practical and theoretical material on the methods of analysis and identification of betulin and its key derivatives. The properties of betulin and its derivatives, which are determined by the structural features of this class of compounds and their tendency to form dimers, polymorphism and isomerization, are considered. This article outlines ways to improve not only the bioavailability but also the solubility of triterpenoids, as well as any hydrophobic drug substances, through chemical transformations by introducing various functional groups, such as carboxyl, hydroxyl, amino, phosphate/phosphonate and carbonyl. The authors of this article summarized the physicochemical characteristics of betulin and its compounds, systematized the literature data on IR and NMR spectroscopy and gave the melting temperatures of key acids and aldehydes based on betulin.
RESUMO
One of the principles of prevention and non-medicamentous treatment of liver diseases, including hepatitis of different etiology, is the normalization of the diet through the consumption of food with physiologically active ingredients, in particular betulin, which helps to eliminate the causes of metabolic and oxidative disorders within liver cells. The aim of the research was to assess in vivo the influence of triterpene alcohol betulin extracted from Betula pendula Roth. birch bark in fat-containing products (for example mayonnaise) on the blood biochemical parameters and liver morphological structure of rats with initiated acute toxic hepatitis. Material and methods. Hepatoprotective and antioxidant activities of betulin as part of mayonnaise samples has been investigated in vivo on the model of toxic hepatitis initiated by carbon tetrachloride in male Wistar rats weighing 210-265 g. The animals were divided into 4 groups of 10 animals each: CG-1 - intact, CG-2 and MG - with carbon tetrachloride initiated toxic hepatitis. rats of the main groups were orally administered mayonnaise once a day at a dosage of 1 ml for 21 days after the formation of the model pathology: OG-1 with the added betulin (1 mg per 1 kg of body weight), OG-2 without betulin. Disorders of metabolic and oxidative processes in liver cells of animals were evaluated by biochemical indicators of blood plasma: the level of glucose, albumin, total cholesterol, triglycerides and urea and the activity of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and γ-glutamyltransferase. Oxidative stress in rats was estimated by the activity of catalase and superoxide dismutase in blood hemolysate (at a dilution of 1:200 and 1:10, respectively); the total prooxidant (in blood plasma) and total antioxidant (in blood hemolysate at a dilution of 1:10) activity were determined spectrophotometrically (colored complexes of TWIN-80 oxidation products with thiobarbituric acid). The morphological structure of rats' liver was estimated by microscopy of prepared cuts of hepatic tissue. Results. Based on biochemical parameters of rat blood plasma, it has been established that the administration of mayonnaise with betulin prevents the development of cytolic syndrome and suppresses the process of peroxidation by directly neutralizing free radicals. Aspartate aminotransferase and alkaline phosphatase activity in blood plasma of the experimental animals of the main group MG-1 reduced by 20.7 and 35.2% compared with indicators of the rats of the main group MG-2. Glucose concentration normalized to the level of the control group CG-1. The concentration of bilirubin and triglycerides decreased by 22.9 and by 48.1%, which indicates a significant reduction in the indicators of cholestatic syndrome in the group of animals OG-1 compared to OG-2. The total prooxidant activity and the concentration of thiobarbiturate-reactive products decreased compared to the CG-2 and MG-2 groups, which indicates the suppression of oxidative stress and, as a result, an improvement in liver conditions of animals with toxic hepatitis even when taking a fat-containing product. In liver histopeparates of animals receiving mayonnaise with betulin, necrobotic changes were less pronounced in comparison with the group MG-2. They were estimated at 1 point: small-drip dystrophy spots were found, haemorrhages in the interregional septum with inflammatory infiltration in the course of hemorrhages against the presence of necrosis hepatocytes with pronounced adipose dystrophy in the centres of the lobules, step necrosis with signs of replacing the damaged hepatocytes of the connective tissue, accompanied by centrolobular hemorrhages in MG-2 rats. Conclusion. Introduced into the composition of mayonnaise betulin, reduces the development of cytolic syndrome in toxic hepatitis and suppresses the process of peroxidation, on the basis of which fat-containing foods with betulin can be recommended for clinical examination as specialized products in acute and chronic liver diseases, including complicated cholestasis.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hepatopatias , Triterpenos , Ratos , Masculino , Animais , Antioxidantes/metabolismo , Ratos Wistar , Tetracloreto de Carbono/metabolismo , Tetracloreto de Carbono/farmacologia , Triterpenos/farmacologia , Triterpenos/metabolismo , Fosfatase Alcalina , Hepatopatias/tratamento farmacológico , Hepatopatias/metabolismo , Hepatopatias/prevenção & controle , Fígado/metabolismo , Estresse Oxidativo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Animais de Laboratório/metabolismo , Necrose/tratamento farmacológico , Necrose/metabolismo , Triglicerídeos/metabolismo , Hemorragia/tratamento farmacológico , Hemorragia/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Peroxidação de LipídeosRESUMO
Natural products serve as the single most productive source for the discovery of drugs and pharmaceutical leads. Among the various chemicals derived from microbes, plants, and animals, phytochemicals have emerged as potential candidates for the development of anticancer drugs due to their structural diversities, complexities, and pleiotropic effects. Herein, we discuss betulinic acid (BA), a ubiquitously distributed lupane structured pentacyclic triterpenoid, scrutinized as a promising natural agent for the prevention, suppression, and management of various human malignancies. Ease of availability, common occurrences, cell-specific cytotoxicity, and astonishing selectivity are the important factors that contribute to the development of BA as an anticancer agent. The current review delineates the mechanistic framework of BA-mediated cancer suppression through the modulation of multiple signaling pathways and also summarizes the key outcomes of BA in preclinical investigations.
Assuntos
Antineoplásicos , Triterpenos , Animais , Humanos , Ácido Betulínico , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Triterpenos/químicaRESUMO
Transforming growth factor (TGF)-ß1 and prostaglandin E2 (PGE2) are humoral factors critically involved in the induction of immunosuppression in the microenvironment of various types of tumors, including melanoma. In this study, we identified a natural compound that attenuated TGF-ß1- and PGE2-induced immunosuppression and examined its effect on B16 melanoma growth in mice. By screening 502 natural compounds for attenuating activity against TGF-ß1- or PGE2-induced suppression of cytolysis in poly(I:C)-stimulated murine splenocytes, we found that betulin was the most potent compound. Betulin also reduced TGF-ß1- and PGE2-induced downregulation of perforin and granzyme B mRNA expression and cell surface expression of NKG2D and CD69 in natural killer (NK) cells. Cell depletion and coculture experiments showed that NK cells, dendritic cells, B cells, and T cells were necessary for the attenuating effects of betulin. Structure-activity relationship analysis revealed that two hydroxyl groups at positions C3 and C28 of betulin, their cis-configuration, and methyl group at C30 played crucial roles in its attenuating activity. In a subcutaneous implantation model of B16 melanoma in mice, intratumor administration of betulin and LY2157299, a TGF-ß1 type I receptor kinase inhibitor, significantly retarded the growth of B16 melanoma. Notably, betulin increased significantly the number of CD69 positive NK cells in tumor sites at early stages of post-tumor cell injection. Our data suggest that betulin inhibits the growth of B16 melanoma by enhancing NK cell activity through attenuating the immunosuppressive tumor microenvironment.
Assuntos
Dinoprostona , Melanoma Experimental , Fator de Crescimento Transformador beta1 , Triterpenos , Animais , Dinoprostona/metabolismo , Células Matadoras Naturais , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Camundongos , Fator de Crescimento Transformador beta1/metabolismo , Triterpenos/farmacologia , Microambiente TumoralRESUMO
Betulin is an important triterpenoid substance isolated from birch bark, which, together with its sulfates, exhibits important bioactive properties. We report on a newly developed method of betulin sulfation with sulfamic acid in pyridine in the presence of an Amberlyst®15 solid acid catalyst. It has been shown that this catalyst remains stable when being repeatedly (up to four cycles) used and ensures obtaining of sulfated betulin with a sulfur content of ~10%. The introduction of the sulfate group into the betulin molecule has been proven by Fourier-transform infrared, ultraviolet-visible, and nuclear magnetic resonance spectroscopy. The Fourier-transform infrared (FTIR) spectra contain absorption bands at 1249 and 835-841 cm-1; in the UV spectra, the peak intensity decreases; and, in the nuclear magnetic resonance (NMR) spectra, of betulin disulfate, carbons С3 and С28 are completely shifted to the weak-field region (to 88.21 and 67.32 ppm, respectively) with respect to betulin. Using the potentiometric titration method, the product of acidity constants K1 and K2 of a solution of the betulin disulfate H+ form has been found to be 3.86 × 10-6 ± 0.004. It has been demonstrated by the thermal analysis that betulin and the betulin disulfate sodium salt are stable at temperatures of up to 240 and 220 °C, respectively. The density functional theory method has been used to obtain data on the most stable conformations, molecular electrostatic potential, frontier molecular orbitals, and mulliken atomic charges of betulin and betulin disulfate and to calculate the spectral characteristics of initial and sulfated betulin, which agree well with the experimental data.
Assuntos
Ácidos Sulfônicos/química , Triterpenos/química , Catálise , Teoria da Densidade Funcional , Conformação Molecular , Estrutura Molecular , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios XRESUMO
Betulin and its derivatives, 28-propyne derivative EB5 and 29-diethyl phosphonate analog ECH147, are promising compounds in anti-tumor activity studies. However, their effect on kidney cells has not yet been studied. The study aimed to determine whether betulin and its derivatives-EB5 and ECH147-influence the viability and oxidative status of human renal proximal tubule epithelial cells (RPTECs). The total antioxidant capacity of cells (TEAC), lipid peroxidation product malondialdehyde (MDA) level, and activity of antioxidant enzymes (SOD, CAT, and GPX) were evaluated. Additionally, the mRNA level of genes encoding antioxidant enzymes was assessed. Cisplatin and 5-fluorouracil were used as reference substances. Betulin and its derivatives affected the viability and antioxidant systems of RPTECs. Betulin strongly reduced TEAC in a concentration-dependent manner. All tested compounds caused an increase in MDA levels. The activity of SOD, CAT, and GPX, and the mRNA profiles of genes encoding antioxidant enzymes depended on the tested compound and its concentration. Betulin showed an cisplatin-like effect, indicating its nephrotoxic potential. Betulin derivatives EB5 and ECH147 showed different impacts on the antioxidant system, which gives hope that these compounds will not cause severe consequences for the kidneys in vivo.
Assuntos
Antioxidantes , Cisplatino , Antioxidantes/farmacologia , Cisplatino/farmacologia , Células Epiteliais , Humanos , Peroxidação de Lipídeos , Estresse Oxidativo , RNA Mensageiro/genética , Superóxido Dismutase/genética , TriterpenosRESUMO
Polyanhydrides based on betulin are promising materials for use in controlled drug delivery systems. Due to the broad biological activity of betulin derivatives and lack of toxicity in vitro and in vivo, these polymers can be used both as polymeric prodrug and as carriers of other biologically active compounds. In this study, we develop a novel amphiphilic branched polyanhydrides synthesized by the two-step melt polycondensation of betulin disuccinate (DBB) and a tricarboxylic derivative of poly(ethylene glycol) (PEG_COOH). DBB and PEG_COOH were used as the hydrophobic and hydrophilic segments, respectively. The content of DBB in copolymers was from 10 to 95 wt%. Copolymers were assessed for their cytostatic activity against various cancer cell lines. Compared to linear DBB and PEG-based polyanhydrides, the branched polyanhydrides exhibited higher anticancer activity. The obtained polymers were able to self-assemble in water to form micelles with hydrodynamic diameters from 144.8 to 561.8 nm. and are stable over a concentration range from 12.5 µg/mL to 6.8 mg/mL. The formed micelles were found to be spherical in shape using a scanning electron microscope. It was found that the structure and composition of polyanhydrides affected the hydrodynamic diameter of the micelles. The branched betulin-based polyanhydrides have the potential to serve as biodegradable polymer prodrugs or carriers for other bioactive compounds.