Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pharm Sci ; 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39218154

RESUMO

Erosion of biodegradable polymeric excipients, such as polylactic acid (PLA) and polylactic-co-glycolic acid (PLGA), is generally characterized by microbalance for the remaining mass of PLA and/or PLGA and Gel Permeation Chromatography (GPC) for molecular weight (MW) decrease. For polymer erosion studies of intravitreal sustained release brimonidine implants, however, both microbalance and GPC present several challenges. Mass loss measurement by microbalance does not have specificity for excipient polymers and drug substances. Accuracy of the remaining mass by weighing could also be low due to sample mass loss through retrieval-drying steps, especially at later drug release (DR) time points. When measuring the decrease of polymer MW by GPC, trace amounts of polymeric degradants (oligomers and/or monomers) trapped inside the implants during DR tests may not be measurable due to sensitivity limitations of the GPC detector and column MW range. Previous efforts to measure remained PLGA weight of dexamethasone micro-implants using qNMR with external calibration have been performed, however, these measurements do not account for chemical structure changes (i.e. LA to GA ratio changes from time zero) of PLGA implants during drug release tests. Here, a qNMR method with an internal standard was developed to monitor the following changes in micro-implants during drug release tests: 1. The remaining overall PLA/PLGA mass. 2. The remaining lactic acid (LA), glycolic acid (GA) unit and PLGA's lauryl ester end group percentages. 3. The trace content of PLA/PLGA oligomers as degradants retained in the implants. Unlike microbalance analysis, qNMR has both specificity for drug substance, excipient polymer, and accuracy due to minimal implant loss during sample preparation. Compared to the overall PLA/PLGA remaining mass generally monitored in erosion studies, the percentage of remaining LA, GA, and the ester end group provide more information about the microstructure change (such as hydrophobicity) of PLA/PLGA. Additionally, the qNMR method can complement GPC methods by measuring the change of remaining PLA and PLGA oligomer concentrations in brimonidine implants, with tenfold less sample and no MW cutoff. The qNMR method can be used as a sensitive tool for both polymer excipient characterization and kinetics studies of brimonidine implant erosion.

2.
J Pharm Sci ; 112(11): 2752-2755, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37673173

RESUMO

Burst release, typical for the drug-loaded electrospun poly(ε-caprolactone) (PCL) scaffolds is unfavorable in case of cytostatics due to the toxic levels reached during the initial implantation period. In the present short communication, we report an unexpected ability of the composite scaffolds made of PCL and water-soluble polyvinylpyrrolidone (PVP) to provide long-term release of widely used anti-cancer drug doxorubicin hydrochloride (DOX-HCl). That effect was observed for electrospun DOX-HCl-loaded composite scaffolds based on PCL and PVP with various mass ratios (100/0, 95/5, 90/10, 75/25 and 50/50). After the morphology and water contact angle studies, it was concluded that PVP content has no effect on the average fiber diameter, while PVP content higher 10 wt. % changes the hydrophobic character of the scaffolds surface (water contact angle of 123.9 ± 3.5°) to superhydrophilic (water contact angle of 0°). Despite the dramatic change in water wettability, by high performance liquid chromatography (HPLC), it was revealed that the PVP content in the scaffolds reduces the DOX-HCl release rate under short (first hours) and long-term (during 1 month) exposure to phosphate buffer saline (PBS). These results are in good agreement with in vitro studies, in which the viability of HeLa cervical cancer cells was higher after 24 h of culture with scaffolds with high PVP content.

3.
J Pharm Sci ; 108(4): 1590-1597, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30472264

RESUMO

We describe the development and evaluation of pyrrolobenzodiazepines (PBDs) in poly(dl-lactide-co-glycolide) and lipid nanoparticle drug delivery systems. We have established that the partition coefficient (LogP) of PBD is a key influencer of the encapsulation efficiency in nanoparticle systems, with higher LogP values associated with higher encapsulation efficiencies toward increased drug payload delivery and better antitumor efficacy. Cytotoxicity assays demonstrated that compounds with higher LogP values demonstrated higher 50% inhibitory concentration values than the free drug. In vivo efficacy studies in mice demonstrated that a single injection of nanoparticle PBD formulations could inhibit tumor growth for nearly 3 weeks, whereas the free drug failed to inhibit growth. Importantly, mice treated with PBD-loaded nanoparticles did not experience significant loss of body weight. These data demonstrate that nanoparticles containing PBD molecules can be used as an alternative to the widely used antibody drug conjugate approach in delivering cytotoxic PBDs.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Benzodiazepinas/administração & dosagem , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Pirróis/administração & dosagem , Animais , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/toxicidade , Benzodiazepinas/farmacocinética , Benzodiazepinas/toxicidade , Peso Corporal/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Humanos , Concentração Inibidora 50 , Injeções Intravenosas , Camundongos , Nanopartículas/química , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Pirróis/farmacocinética , Pirróis/toxicidade , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Pharm Sci ; 108(12): 3769-3780, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31521640

RESUMO

This review addresses a major question of importance to pharmaceutical scientists: how can novel drug delivery systems play a role in maximizing the UV protection of sunscreens? Because more and more people are being diagnosed with skin cancer each year than all other cancers combined, adequate sun protective measures are pivotal. In this context, the present review is to give an up-to-date overview on the different nanocarrier systems that have been explored so far for encapsulating different types of UV filters present on the market. The aim of these carrier systems is to prevent skin penetration and to enhance the photoprotective potential of sunscreen actives. For each supramolecular system, a brief description along with the studies, achievements, and pitfalls, on the type of UV actives inside them, ranging from classical UV filters to new generation of UV actives is given. A brief overview of UV filters encapsulated in microcarriers is also discussed.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Neoplasias Cutâneas/prevenção & controle , Pele/efeitos dos fármacos , Protetores Solares/química , Protetores Solares/farmacologia , Raios Ultravioleta/efeitos adversos , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA