Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 23(7): 236, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002713

RESUMO

Piperine (PIP) is a neuroprotective phytomedicine that has profound acetylcholine esterase and reactive oxygen species inhibition effect in Alzheimer's disease (AD) model. However, the oral delivery of PIP is limited by poor aqueous solubility and low bioavailability in systemic circulation. To improve the PIP bioavailability, the polyamidoamine (PAMAM) G4 dendrimer is grafted with tocopheryl polyethylene glycol succinate-1000 (TPGS) through carbodiimide chemistry to form TPGS-PAMAM conjugate. The TPGS-PAMAM coupling was confirmed through proton NMR and FTIR techniques. PIP was encapsulated in the TPGS-PAMAM through solvent diffusion method to form PIP-TPGS-PAMAM. The particle size for PIP-TPGS-PAMAM found the less than 50 nm, whereas entrapment efficiency found to 87 ± 3.5% and 10.6 ± 2.9% drug loading. The powder differential scanning calorimetry and powder X-ray diffraction characterization were employed to evaluate the amorphous encapsulation of the PIP in TPGS-PAMAM. The PIP-TPGS-PAMAM stability was studied in the gastric fluids which showed no drastic difference in particle size and encapsulation efficiency compared to PIP-PAMAM. The in vitro release analysis revealed 37 ± 4.1% PIP release from the PIP-TPGS-PAMAM matrix, and 71 ± 4.9% PIP release from the PIP-PAMAM dendrimer was observed in 48 h. The single-dose oral gavage to Wistar rats of PIP-TPGS-PAMAM showed the AUC0-∞ 14.38 µg/mL.h, Cmax 7.77 ± 1.65 µg/mL, Tmax, 1.6 ± 0.18 h, and half-life 3.47 ± 0.64 h for PIP in systemic circulation. PIP-PAMAM and free PIP showed significantly poor AUC0-∞ compared to PIP-TPGS-PAMAM. The brain uptake studies revealed PIP-TPGS-PAMAM treated group showed 2.2 ± 0.37 µg/g PIP content compared to free PIP administered group which was 0.4 ± 0.10 µg/g. Therefore, PIP-TPGS-PAMAM can offer excellent prospect for the delivery hydrophobic drugs to brain in AD.


Assuntos
Dendrímeros , Alcaloides , Animais , Benzodioxóis , Encéfalo , Dendrímeros/química , Portadores de Fármacos/química , Tamanho da Partícula , Piperidinas , Poliaminas , Polietilenoglicóis/química , Alcamidas Poli-Insaturadas , Pós , Ratos , Ratos Wistar , Succinatos , Ácido Succínico , Vitamina E/química
2.
Anal Bioanal Chem ; 413(20): 5181-5191, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34173038

RESUMO

Validated LC-MS method for the direct quantitative analysis of galantamine (acetylcholinesterase inhibitor) was developed in rat cerebrospinal fluid and brain homogenate besides rat plasma, utilizing structurally close nalbuphine as an internal standard. After a simple protein precipitation step, samples are separated on 2-µm C18 column kept at 40 °C, using isocratic flow of 80% methanol in pH 9.5 ammonium formate buffer, and retention times were about 1.8 and 2.9 min for galantamine and nalbuphine, respectively. Mass detection with electrospray ionization (ESI) and positive polarity was able to detect 0.2 ng mL-1 galantamine using single ion monitoring mode (SIM) at m/z 288 for galantamine and m/z 358 for nalbuphine. The method showed linearity within the range of 0.5 - 300 ng mL-1. The proposed method was validated according to FDA guidelines. Trueness and precision showed acceptable values at all quality control levels, and recoveries were within 85.6 - 114.3% in all matrices at all runs and with relative standard deviations within 0.2 - 12.4%. The method was used to study in vivo brain uptake and pharmacokinetics of galantamine from brain homogenate and plasma samples following the administration of nasal galantamine-bound chitosan nanoparticles compared to oral and nasal galantamine solutions, in scopolamine-induced Alzheimer's disease rat model.


Assuntos
Quitosana/química , Cromatografia Líquida/métodos , Galantamina/química , Galantamina/metabolismo , Espectrometria de Massas/métodos , Nanopartículas/química , Animais , Encéfalo/metabolismo , Química Encefálica , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacocinética , Galantamina/sangue , Masculino , Nalbufina/química , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade
3.
Xenobiotica ; 50(4): 389-400, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31298070

RESUMO

1. Donepezil (DPZ) is an acetylcholinesterase (AchE) inhibitor used in the mild to moderately severe Alzheimer's disease. Among its major metabolites, 6-O-desmethyl DPZ (6-DDPZ), 5-O-desmethyl DPZ (5-DDPZ) and DPZ N-oxide, the anti-AchE activities of 5-DDPZ and DPZ N-oxide have never been clearly identified before. Besides, there is no report on simultaneous determination of DPZ and its three metabolites in the brain, thus their uptake in hippocampus and cortex are unknown. Therefore, the current studies are proposed aiming to: (1) investigate the anti-AchE activities and brain uptake of DPZ and its three metabolites and (2) compare their pharmacokinetics and brain uptake between normal and scopolamine-induced rats.2. DPZ and its three metabolites demonstrated anti-AchE activities with the IC50 in the order of DPZ (7.20 × 10-2 µM), 6-DDPZ (1.14 × 10-1 µM), 5-DDPZ (4.03 × 10-1 µM) and DPZ N-oxide (1.61 µM). They were also evenly distributed in the brain and retained much longer in the brain than that in plasma in normal rats.3. Compared to normal rats, Cmax, AUC0→24h and AUC0→∞ of DPZ were reduced by 52.0%, 31.2% and 30.1%, respectively; Tmax of DPZ and its three metabolites were prolonged and their brain uptake were decreased in scopolamine-induced rats, suggesting the potential reduced absorption of DPZ.


Assuntos
Inibidores da Colinesterase/metabolismo , Donepezila/metabolismo , Escopolamina/toxicidade , Animais , Encéfalo/metabolismo , Disfunção Cognitiva/induzido quimicamente , Ratos
4.
Eur J Nucl Med Mol Imaging ; 46(6): 1299-1308, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30863934

RESUMO

PURPOSE: Visual interpretation of PET [18F]flutemetamol images relies on systematic review of five brain regions and is considered positive when an elevated signal is observed in at least one region. Amnestic mild cognitive impairment (aMCI) is an early clinical presentation of Alzheimer's disease (AD); hence it is of interest to determine if the pattern of visually read regional positivity between end-of-life (EoL) patients with and without dementia and aMCI patients is different. METHODS: A total of 180 EoL patients with and without dementia (mean age 81 years, range 59 to 95 years) and 232 aMCI patients (mean age 71 years, range 53 to 91 years) were scanned following intravenous administration of 185-370 MBq [18F]flutemetamol. Images from both studies were read by two groups of five blinded readers who independently classified each of the five regions as either positive or negative. The majority interpretation made by at least three of the five readers was used as the imaging endpoint and compared with a composite standardized uptake value ratio (SUVR) analysis using a predetermined threshold. RESULTS: Amyloid-positive images from 71 of 106 EoL patients coming to autopsy and from 97 aMCI patients were included. In the images from the EoL patients widespread deposition of amyloid was observed, with 76% of the images positive in all five regions and a further 20% positive in four regions. In the images from the aMCI patients, similar results were observed with 87% of the images positive in five regions and a further 5% positive in four regions. The mean SUVR of these positively read images was 2.24 (range 1.48 to 3.14) and 2.08 (range 1.28 to 3.04) in the autopsy and aMCI groups, respectively. There was 95.3% agreement between the visual reading and SUVR quantitation in the aMCI group and 90.4% agreement in the autopsy group. CONCLUSION: Patients with aMCI showed a similar distribution of amyloid deposition determined by both visual reading and SUVR to that observed in patients with and without dementia coming to autopsy. Most of the aMCI patients, who are already within the AD continuum, had widespread amyloid deposition in terms of amount and topographical progression. Attempts to observe potential initial signs of amyloid deposition should focus on populations earlier in the dementia spectrum such as patients with subjective cognitive decline or even at-risk subjects with earlier stages of disease.


Assuntos
Amnésia/diagnóstico por imagem , Amiloide/metabolismo , Compostos de Anilina/análise , Benzotiazóis/análise , Disfunção Cognitiva/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/metabolismo , Amiloidose , Autopsia , Encéfalo/diagnóstico por imagem , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Doente Terminal
5.
Neuroimage ; 165: 83-91, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28988133

RESUMO

OBJECTIVES: PET imaging of the 18 kDa translocator protein (TSPO), a biomarker of microglial activity, receives growing interest in clinical and preclinical applications of neuroinflammatory and neurodegenerative brain diseases. In globally affected brains, intra-cerebral pseudo reference regions are not feasible. Consequently, many brain-independent approaches have been attempted, including SUV analysis and normalization to muscle- or heart uptake, aiming to stabilize quantitative analysis. In this study, we systematically compared different image normalization methods for static late phase TSPO-PET imaging of rodent brain. METHODS: We first obtained gamma counter measurements for gold standard quantitation of [18F]GE180 uptake in brain of C57Bl/6 mice (N = 10) after PET, aiming to identify factors contributing significantly to the quantitative results. Subsequently, data from a large cohort of C57Bl/6 mice (N = 79) were compiled to precisely determine the weighted influence and variance attributable these factors by regression analysis. Scan-rescan variability and agreement with histology were used to validate the tested normalization methods in an Alzheimer's disease (AD) mouse model with pathologically increased TSPO expression (PS2APP; N = 24). Longitudinal data from AD model mice (N = 10) scanned at four different ages were used to challenge and validate the different normalization methods in a practical application. RESULTS: Gamma counter results revealed that injected dose, body weight and PET-measured radioactivity concentration in the ventral myocardium all significantly accounted for [18F]GE180 activity in the brain. Skeletal muscle activity had high test-retest variance in this PET only application and was therefore pursued no further. Regression analysis of the large scale evaluation showed that scaling to injected dose or SUV analysis accounted for little variance in brain activity (R2 < 0.5), but inclusion of myocardial activity together with injected dose and body weight in the regression model accounted for most of the variance in brain uptake (R2 = 0.94). Scan-rescan stability, correlation with histology and applicability for longitudinal examination in the disease model were also significantly improved by inclusion of myocadial uptake in the quantitative model. CONCLUSION: Cerebral and myocardial TSPO expression are highly coupled under physiological conditions. Myocardial uptake has great potential for stabilization of static late phase [18F]GE180 quantification in brain in the absence of a valid intra-cerebral pseudo-reference region.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imagem Molecular/métodos , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/análise , Doença de Alzheimer/diagnóstico por imagem , Animais , Feminino , Radioisótopos de Flúor , Coração/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio , Neuroimagem/métodos , Cintilografia/métodos , Compostos Radiofarmacêuticos
6.
Mol Pharm ; 15(12): 5493-5500, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30376346

RESUMO

Despite the promising features of liposomes as brain drug delivery vehicles, it remains uncertain how they influence the brain uptake in vivo. In order to gain a better fundamental understanding of the interaction between liposomes and the blood-brain barrier (BBB), it is indispensable to test if liposomes affect drugs with different BBB transport properties (active influx or efflux) differently. The aim of this study was to quantitatively evaluate how PEGylated (PEG) liposomes influence brain delivery of diphenhydramine (DPH), a drug with active influx at the BBB, in rats. The brain uptake of DPH after 30 min intravenous infusion of free DPH, PEG liposomal DPH, or free DPH + empty PEG liposomes was compared by determining the unbound DPH concentrations in brain interstitial fluid and plasma with microdialysis. Regular blood samples were taken to measure total DPH concentrations in plasma. Free DPH was actively taken up into the brain time-dependently, with higher uptake at early time points followed by an unbound brain-to-plasma exposure ratio ( Kp,uu) of 3.0. The encapsulation in PEG liposomes significantly decreased brain uptake of DPH, with a reduction of Kp,uu to 1.5 ( p < 0.05). When empty PEG liposomes were coadministered with free drug, DPH brain uptake had a tendency to decrease ( Kp,uu 2.3), and DPH was found to bind to the liposomes. This study showed that PEG liposomes decreased the brain delivery of DPH in a complex manner, contributing to the understanding of the intricate interactions between drug, liposomes, and the BBB.


Assuntos
Barreira Hematoencefálica/metabolismo , Difenidramina/farmacocinética , Composição de Medicamentos/métodos , Animais , Barreira Hematoencefálica/citologia , Difenidramina/administração & dosagem , Liberação Controlada de Fármacos , Líquido Extracelular/metabolismo , Lipossomos , Masculino , Microdiálise , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley
7.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 74(11): 1302-1312, 2018.
Artigo em Japonês | MEDLINE | ID: mdl-30464098

RESUMO

We performed a basic evaluation for measuring the input function using a fan-beam collimator. Furthermore, we examined the validity of the brain blood flow quantitative measurement from the input function. Using the fanbeam collimator, we imaged syringes of various diameters containing 99 mTc as well as a virtual aorta inside a thoracic phantom. We changed the collimator distance and angle in relation to the sources, and the syringe was placed in vertical and horizontal positions as well. For evaluation, we used region of interest (ROI) of various sizes and positions. Furthermore, we conducted clinical evaluation for 19 subjects and calculated whole-brain mean cerebral blood flow using improved brain uptake ratio method by examination of 99 mTc-ECD cerebral blood flow. For ROIs smaller in size than diameter of the syringes and virtual ascending aorta, amount of change in the ROI counts by fan-beam collimator became smaller as distance to the source became closer, with less than 5% at 175 mm. Also, change with respect to angle of the collimator was less than 5% at 20°. In a clinical study, aortas could be imaged without truncation and input-functions could be measured in all 19 patients. By using ROIs smaller than the aorta diameter and placing the collimator close to the source, it was suggested that fan-beam collimator can be used to determine the input function.


Assuntos
Encéfalo , Circulação Cerebrovascular , Tomografia Computadorizada de Emissão de Fóton Único , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Câmaras gama , Humanos , Imagens de Fantasmas
8.
Anal Biochem ; 529: 270-277, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27665679

RESUMO

The advent of dissolution dynamic nuclear polarization (DNP) led to the emergence of a new kind of magnetic resonance (MR) measurements providing the opportunity to probe metabolism in vivo in real time. It has been shown that, following the injection of hyperpolarized substrates prepared using dissolution DNP, specific metabolic bioprobes that can be used to differentiate between healthy and pathological tissue in preclinical and clinical studies can be readily detected by MR thanks to the tremendous signal enhancement. The present article aims at reviewing the studies of cerebral function and metabolism based on the use of hyperpolarized MR. The constraints and future opportunities that this technology could offer are discussed.


Assuntos
Encéfalo/metabolismo , Meios de Contraste/metabolismo , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Animais , Humanos , Modelos Biológicos
9.
Metab Brain Dis ; 32(6): 1903-1912, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28779418

RESUMO

Hepatic encephalopathy that is associated with severe liver failure may compromise the blood-brain barrier (BBB) integrity. However, the effects of less severe liver diseases, in the absence of overt encephalopathy, on the BBB are not well understood. The goal of the current study was to investigate the effects of hepatic ischemia-reperfusion (IR) injury on the BBB tight junction permeability to small, hydrophilic molecules using the widely used [14C]sucrose and recently-proposed alternative [13C]sucrose as markers. Rats were subjected to 20 min of hepatic ischemia or sham surgery, followed by 8 h of reperfusion before administration of a single bolus dose of [14C] or [13C]sucrose and collection of serial (0-30 min) blood and plasma and terminal brain samples. The concentrations of [14C] and [13C]sucrose in the samples were determined by measurement of total radioactivity (nonspecific) and LC-MS/MS (specific), respectively. IR injury significantly increased the blood, plasma, and brain concentrations of both [14C] and [13C]sucrose. However, when the brain concentrations were corrected for their respective area under the blood concentration-time curve, only [14C]sucrose showed significantly higher (30%) BBB permeability values in the IR animals. Because [13C]sucrose is a more specific BBB permeability marker, these data indicate that our animal model of hepatic IR injury does not affect the BBB tight junction permeability to small, hydrophilic molecules. Methodological differences among studies of the effects of liver diseases on the BBB permeability may confound the conclusions of such studies.


Assuntos
Barreira Hematoencefálica/metabolismo , Isótopos de Carbono/farmacocinética , Radioisótopos de Carbono/farmacocinética , Fígado/irrigação sanguínea , Traumatismo por Reperfusão/metabolismo , Animais , Transporte Biológico , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Modelos Animais de Doenças , Masculino , Permeabilidade , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/patologia , Sacarose/farmacocinética
10.
Neurochem Res ; 41(10): 2797-2809, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27412117

RESUMO

Valproic acid (VPA) has been used to treat epileptic seizures for decades, but it may also possess therapeutic potential in other nervous system diseases. However, VPA is extensively bound to plasma proteins, asymmetrically transported across the blood-brain barrier and metabolized to toxic species in the liver, which all contribute to its severe off-target adverse effects and possible drug-drug interactions. In this study, we evaluated seven amino acid prodrugs of VPA that were targeted to utilize L-type amino acid transporter 1 (LAT1), if they could alter the brain uptake mechanism and systemic pharmacokinetics of VPA. All prodrugs had affinity for LAT1 studied as competitive inhibition of [14C]-L-leucine in human breast cancer (MCF-7) cell line. However, since the ester prodrugs were unstable they were not studied further, instead the corresponding amide prodrugs were used to evaluate their systemic pharmacokinetics in rats and the uptake mechanism via LAT1 into the rat brain. All amide prodrugs were bound to a lesser extent to plasma proteins than VPA and this being independent of the prodrug concentration. Amide prodrugs were also delivered into the brain after intravenous bolus injection. One of the prodrug showed greater brain uptake and high selectivity for LAT1 and it was able to release VPA slowly within the brain. Therefore, it was concluded that the VPA brain concentrations can be stabilized as well as the problematic pharmacokinetic profile can be altered by a LAT1-selective prodrug.


Assuntos
Aminoácidos/metabolismo , Encéfalo/efeitos dos fármacos , Ácido Valproico/farmacocinética , Aminoácidos/administração & dosagem , Animais , Transporte Biológico/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Humanos , Injeções Intravenosas , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Ratos , Ácido Valproico/administração & dosagem , Ácido Valproico/farmacologia
11.
Mol Pharm ; 13(7): 2484-91, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27266990

RESUMO

We have recently reported that by converting a perforin inhibitor into an l-type amino acid transporter 1 (LAT1)-utilizing prodrug its cellular uptake can be greatly increased. The aim of the present study was to determine the in vivo and brain pharmacokinetics of two perforin inhibitors and their LAT1-utilizing prodrugs 1 and 2. In addition, the brain uptake mechanism and entry into primary mouse cortical neurons and astrocytes were evaluated. After 23 µmol/kg i.p. bolus injection, the prodrugs' unbound area under the concentration curve in brain was 0.3 nmol/g × min, whereas the parent drugs could not reach the brain. The unbound brain concentrations of the prodrugs after 100 µM in situ mouse brain perfusion were 521.4 ± 46.9 and 126.9 ± 19.9 pmol/g for prodrugs 1 and 2, respectively. The combination of competing transporter substrates for LAT1, l-tryptophan, and for organic anion transporting polypeptides, probenecid, decreased the brain concentrations to 352.4 ± 44.5 and 70.9 ± 7.0 pmol/g, respectively. In addition, in vitro uptake studies showed that at 100 µM prodrug 1 had 3.4-fold and 4.5-fold higher uptake rate into neurons and astrocytes, respectively, compared to its parent drug. Thus, the prodrugs enhance significantly the therapeutic potential of the parent drugs for the treatment of disorders of central nervous system in which neuroinflammation is involved.


Assuntos
Encéfalo/metabolismo , Perforina/antagonistas & inibidores , Pró-Fármacos/farmacocinética , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Transporte Biológico/fisiologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Feminino , Ketamina/farmacologia , Masculino , Espectrometria de Massas , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Gravidez , Xilazina/farmacologia
12.
Int J Biol Macromol ; 273(Pt 2): 133125, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38897498

RESUMO

Glioblastoma multiforme (GBM) exhibits a high mortality with an incidence rate of 3-5 per 100,000 each year, which demands existence of newer approach for its treatment. The current study focuses on synthesis of novel lipidic nanovesicles (LNs) loaded with highly potent macromolecule Lentinan (LNT) and surface modified with methoxy poly (ethylene glycol; PEG) amine (m-PEG-NH2)-grafted-chitosan (CS) for intranasal delivery. The grafting procedure was optimized using Box Behnken design (BBD) to limit the use of organic solvents. The fabricated polymer showed enhanced aqueous solubility, biodegradability and mucoadhesion, resulting in higher nasal mucosa permeation (z = 53.52 µm). The presence of PEG enabled the sustained release of LNT till 48 h and assisted in achieving higher accumulation of LNT in CSF (41.7 ± 3.1 µg/mL) and a higher brain targeting potential of 96.3 ± 2.31 % (p < 0.05). In-vitro cellular studies showed the enhanced anti-GBM effect of LNT on U87 MG cells by reducing the cell viability (~2 times reduction in IC50 value) accompanied with large number of cells undergoing late apoptosis and death (p < 0.05) because of the higher cellular uptake (63.22 ± 3.01 ng/100 cells) of novel formulation. The copolymer comprising LNs were biocompatible, stable and can be used as an effective tool in the management of GBM.


Assuntos
Administração Intranasal , Quitosana , Glioblastoma , Lentinano , Nanopartículas , Polietilenoglicóis , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Quitosana/química , Humanos , Lentinano/química , Lentinano/farmacologia , Lentinano/administração & dosagem , Polietilenoglicóis/química , Linhagem Celular Tumoral , Nanopartículas/química , Portadores de Fármacos/química , Animais , Ratos , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos
13.
Magn Reson Med Sci ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38839300

RESUMO

PURPOSE: Chronic obstructive pulmonary disease (COPD) is a complex multisystem disease associated with comorbidities outside the lungs. The aim of this study was to measure changes in metrics of pulmonary gas exchange function and brain tissue metabolism in a mouse model of COPD using hyperpolarized 129Xe (HP 129Xe) MRI/MR spectroscopy (MRS) and investigate the relationship between the metrics of lung and brain. METHODS: COPD phenotypes were induced in 15 mice by 6-week administration of cigarette smoke extract (CSE) and lipopolysaccharide (LPS). A separate negative control (NC) group was formed of 6 mice administered with saline for 6 weeks. After these 6-week administrations, the pulmonary gas exchange function parameter fD (%) and the rate constant, α (s-1), which are composed of the cerebral blood flow Fi and the longitudinal relaxation rate 1/T1i in brain tissue, were evaluated by HP 129Xe MRI/MRS. RESULTS: The fD of CSE-LPS mice was significantly lower than that of NC mice, which was in parallel with an increase in bronchial wall thickness. The α in the CSE-LPS mice decreased with the decrease of fD in contrast to the trend in the NC mice. To further elucidate the opposed trend, the contribution of T1i was separately determined by measuring Fi. The T1i in the CSE-LPS mice was found to correlate negatively with fD as opposed to the positive trend in the NC mice. The opposite trend in T1i between CSE-LPS and NC mice suggests hypoxia in the brain, which is induced by the impaired oxygen uptake as indicated by the reduced fD. CONCLUSION: This study demonstrates the feasibility of using HP 129Xe MRI/MRS to study pathological mechanisms of brain dysfunction in comorbidities with COPD.

14.
Nutrients ; 15(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36904166

RESUMO

In a rat model, following exposure to rat folate receptor alpha antibodies (FRαAb) during gestation, FRαAb accumulates in the placenta and the fetus and blocks folate transport to the fetal brain and produces behavioral deficits in the offspring. These deficits could be prevented with folinic acid. Therefore, we sought to evaluate folate transport to the brain in young rat pups and determine what effect FRαAb has on this process, to better understand the folate receptor autoimmune disorder associated with cerebral folate deficiency (CFD) in autism spectrum disorders (ASD). When injected intraperitoneally (IP), FRαAb localizes to the choroid plexus and blood vessels including the capillaries throughout the brain parenchyma. Biotin-tagged folic acid shows distribution in the white matter tracts in the cerebrum and cerebellum. Since these antibodies can block folate transport to the brain, we orally administered various folate forms to identify the form that is better-absorbed and transported to the brain and is most effective in restoring cerebral folate status in the presence of FRαAb. The three forms of folate, namely folic acid, D,L-folinic acid and levofolinate, are converted to methylfolate while L-methylfolate is absorbed as such and all are efficiently distributed to the brain. However, significantly higher folate concentration is seen in the cerebrum and cerebellum with levofolinate in the presence or absence of FRαAb. Our results in the rat model support testing levofolinate to treat CFD in children with ASD.


Assuntos
Deficiência de Ácido Fólico , Ácido Fólico , Gravidez , Feminino , Ratos , Animais , Leucovorina , Receptor 1 de Folato/metabolismo , Anticorpos , Encéfalo/metabolismo
15.
Bioeng Transl Med ; 8(2): e10424, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36925676

RESUMO

Progress in treating central nervous system (CNS) disorders is retarded owing to a limited understanding of brain disease pathology. Additionally, the blood-brain barrier (BBB) limits molecular entry into the brain. Many approaches for brain drug delivery to overcome the BBB, such as BBB permeability enhancement, transient BBB disruption, and direct surgical administration have been explored with limited success. Recent research has shown that direct vascular channels exist between the skull bone marrow and the meninges, allowing myeloid and lymphoid cells to migrate. We hypothesized that these direct channels may also allow brain drug delivery from the skull bone marrow to the brain. In this study, for the first time we propose intraosseous administration of drugs into the skull (intracalvariosseous [ICO]) as a novel approach for brain drug delivery via BBB bypassing routes. We tested the feasibility of the approach by applying nine representative compounds over thinned mouse skulls to simulate ICO and measuring the compound entry level in the brain compared to that after systemic administration. Surprisingly, we found that the skull is not completely impermeable to drug penetration into the brain and the tested compounds reached the brain tissue several tens-to-hundred times higher by ICO than systemic application. These findings suggest a role for the BBB bypassing route from skull to brain, apart from the systemic route, in the drug entry into the brain after ICO. This approach should be applicable to other CNS drugs and even BBB impermeable drugs. Overall ICO provides an innovative and advantageous pathway for effective treatment of brain diseases.

16.
Pharmaceutics ; 15(3)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36986712

RESUMO

Rotigotine (RTG) is a non-ergoline dopamine agonist and an approved drug for treating Parkinson's disease. However, its clinical use is limited due to various problems, viz. poor oral bioavailability (<1%), low aqueous solubility, and extensive first-pass metabolism. In this study, rotigotine-loaded lecithin-chitosan nanoparticles (RTG-LCNP) were formulated to enhance its nose-to-brain delivery. RTG-LCNP was prepared by self-assembly of chitosan and lecithin due to ionic interactions. The optimized RTG-LCNP had an average diameter of 108 nm with 14.43 ± 2.77% drug loading. RTG-LCNP exhibited spherical morphology and good storage stability. Intranasal RTG-LCNP improved the brain availability of RTG by 7.86 fold with a 3.84-fold increase in the peak brain drug concentration (Cmax(brain)) compared to intranasal drug suspensions. Further, the intranasal RTG-LCNP significantly reduced the peak plasma drug concentration (Cmax(plasma)) compared to intranasal RTG suspensions. The direct drug transport percentage (DTP (%)) of optimized RTG-LCNP was found to be 97.3%, which shows effective direct nose-to-brain drug uptake and good targeting efficiency. In conclusion, RTG-LCNP enhanced drug brain availability, showing the potential for clinical application.

17.
Expert Opin Drug Deliv ; 20(11): 1657-1679, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38014509

RESUMO

OBJECTIVE: Ferulic acid (Fer) displays antioxidant/anti-inflammatory properties useful against neurodegenerative diseases. To increase Fer uptake and its central nervous system residence time, a dimeric prodrug, optimizing the Fer loading on nasally administrable solid lipid microparticles (SLMs), was developed. METHODS: The prodrug was synthesized as Fer dimeric conjugate methylated on the carboxylic moiety. Prodrug antioxidant/anti-inflammatory properties and ability to release Fer in physiologic environments were evaluated. Tristearin or stearic acid SLMs were obtained by hot emulsion technique. In vivo pharmacokinetics were quantified by HPLC. RESULTS: The prodrug was able to release Fer in physiologic environments (whole blood and brain homogenates) and induce in vitro antioxidant/anti-inflammatory effects. Its half-life in rats was 18.0 ± 1.9 min. Stearic acid SLMs, exhibiting the highest prodrug loading and dissolution rate, were selected for nasal administration to rats (1 mg/kg dose), allowing to obtain high prodrug bioavailability and prolonged residence in the cerebrospinal fluid, showing AUC (Area Under Concentration) values (108.5 ± 3.9 µg∙mL-1∙min) up to 30 times over those of Fer free drug, after its intravenous/nasal administration (3.3 ± 0.3/5.16 ± 0.20 µg∙mL-1∙min, respectively) at the same dose. Chitosan presence further improved the prodrug brain uptake. CONCLUSIONS: Nasal administration of prodrug-loaded SLMs can be proposed as a noninvasive approach for neurodegenerative disease therapy.


Assuntos
Doenças Neurodegenerativas , Pró-Fármacos , Ratos , Animais , Administração Intranasal , Portadores de Fármacos , Antioxidantes/farmacologia , Encéfalo , Anti-Inflamatórios , Tamanho da Partícula
18.
Chem Phys Lipids ; 244: 105193, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35278428

RESUMO

Silibinin (SIL) is a neuroprotective and amyloid aggregate inhibitor that showed therapeutic applications in preclinical studies of Alzheimer's disease (AD). Due to poor aqueous solubility free SIL is unable to reach the brain after oral administration. Therefore SIL was encapsulated in nano-liquid crystals (NLCs) to increase payload in brain using glyceryl monooleate (GMO). The NLCs were prepared through the emulsification and probe sonication method. The optimization of SIL-NLCs was done using Box-Behnken design (BBD). BBD investigated the effect of independent variable such as GMO weight, pluronics-127 (PF-127) concentration, and sonication time on critical quality attributes such as particle size and percentage drug loading (%DL) for enhancement of drug availability at targeted site. The particle size of SIL-NLCs optimized by BBD was found to be 113.2 ± 3.3 nm particle size and 8.02 ± 0.4% DL. The FTIR and DSC characterization of SIL-NLCs showed SIL is dispersed in the GMO matrix in the amorphous form. TEM analysis confirmed the cubical and crystal-like shape of the NLCs having particle size less than 150 nm. After single oral gavage of a 30 mg/kg dosage of SIL in Wistar rats, the pharmacokinetic investigations revealed that the amount of SIL available in plasma of animals administered with NLCs showed AUC0-∞ = 19.61 µg mL-1 h compared to free SIL group having AUC0-∞ = 6.72 µg mL-1 h (P > 0.005). Brain uptake studies showed SIL-NLCs treated groups have 2.25 µg/g availability of SIL compared to 10.02 µg/g for the free SIL group. The outcomes of this investigation are promising in terms of potential use of SIL-NLCs in further studies as well as using SIL for the treatment of AD.


Assuntos
Portadores de Fármacos , Nanoestruturas , Administração Oral , Animais , Encéfalo , Portadores de Fármacos/química , Glicerídeos , Lipídeos/química , Nanoestruturas/química , Tamanho da Partícula , Ratos , Ratos Wistar , Silibina
19.
Front Pharmacol ; 13: 958543, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105215

RESUMO

Monoclonal antibodies play an important role in the treatment of various diseases. However, the development of these drugs against neurological disorders where the drug target is located in the brain is challenging and requires a good understanding of the local drug concentration in the brain. In this original research, we investigated the systemic and local pharmacokinetics in the brain of healthy rats after either intravenous (IV) or intracerebroventricular (ICV) administration of EGFRvIII-T-Cell bispecific (TCB), a bispecific monoclonal antibody. We established an experimental protocol that allows serial sampling in serum, cerebrospinal fluid (CSF) and interstitial fluid (ISF) of the prefrontal cortex in freely moving rats. For detection of drug concentration in ISF, a push-pull microdialysis technique with large pore membranes was applied. Brain uptake into CSF and ISF was characterized and quantified with a reduced brain physiologically-based pharmacokinetic model. The model allowed us to interpret the pharmacokinetic processes of brain uptake after different routes of administration. The proposed model capturing the pharmacokinetics in serum, CSF and ISF of the prefrontal cortex suggests a barrier function between the CSF and ISF that impedes free antibody transfer. This finding suggests that ICV administration may not be better suited to reach higher local drug exposure as compared to IV administration. The model enabled us to quantify the relative contribution of the blood-brain barrier (BBB) and Blood-CSF-Barrier to the uptake into the interstitial fluid of the brain. In addition, we compared the brain uptake of three monoclonal antibodies after IV dosing. In summary, the presented approach can be applied to profile compounds based on their relative uptake in the brain and provides quantitative insights into which pathways are contributing to the net exposure in the brain.

20.
ACS Chem Neurosci ; 12(24): 4491-4499, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34812607

RESUMO

Mitochondrial dysfunction has been indicated in neurodegenerative and other disorders. The mitochondrial complex I (MC-I) of the electron transport chain (ETC) on the inner membrane is the electron entry point of the ETC and is essential for the production of reactive oxygen species. Based on a recently identified ß-keto-amide type MC-I modulator from our laboratory, an 18F-labeled positron emission tomography (PET) tracer, 18F-2, was prepared. PET/CT imaging studies demonstrated that 18F-2 exhibited rapid brain uptake without significant wash out during the 60 min scanning time. In addition, the binding of 18F-2 was higher in the regions of the brain stem, cerebellum, and midbrain. The uptake of 18F-2 can be significantly blocked by its parent compound. Collectively, the results strongly suggest successful development of MC-I PET tracers from this chemical scaffold that can be used in future mitochondrial dysfunction studies of the central nervous system.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Encéfalo/diagnóstico por imagem , Complexo I de Transporte de Elétrons , Radioisótopos de Flúor , Compostos Radiofarmacêuticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA