Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ann Bot ; 124(2): 245-253, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31170728

RESUMO

BACKGROUND AND AIMS: Wood traits are increasingly being used to document tree performance. In the Congo Basin, however, weaker seasonality causes asynchrony of wood traits between trees. Here, we monitor growth and phenology data to date the formation of traits. METHODS: For two seasons, leaf and cambial phenology were monitored on four Terminalia superba trees (Mayombe) using cameras, cambial pinning and dendrometers. Subsequently, vessel lumen and parenchyma fractions as well as high-resolution isotopes (δ13C/δ18O) were quantified on the formed rings. All traits were dated and related to weather data. KEY RESULTS: We observed between-tree differences in green-up of 45 d, with trees flushing before and after the rainy season. The lag between green-up and onset of xylem formation was 59 ± 21 d. The xylem growing season lasted 159 ± 17 d with between-tree differences of up to 53 d. Synchronized vessel, parenchyma and δ13C profiles were related to each other. Only parenchyma fraction and δ13C were correlated to weather variables, whereas the δ18O pattern showed no trend. CONCLUSIONS: Asynchrony of leaf and cambial phenology complicates correct interpretation of environmental information recorded in wood. An integrated approach including high-resolution measurements of growth, stable isotopes and anatomical features allows exact dating of the formation of traits. This methodology offers a means to explore the asynchrony of growth in a rainforest and contribute to understanding this aspect of forest resilience.


Assuntos
Árvores , Madeira , Câmbio , Congo , Estações do Ano , Xilema
2.
Tree Physiol ; 42(6): 1149-1163, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34918169

RESUMO

Recent climate projections predict a more rapid increase of winter temperature than summer and global temperature averages in temperate and cold environments. As there is relatively little experimental knowledge on the effect of winter warming on cambium phenology and stem growth in species growing in cold environments, the setting of manipulative experiments is considered of primary importance, and they can help to decipher the effect of reduced winter chilling and increased forcing temperatures on cambium reactivation, growth and xylem traits. In this study, localized stem heating was applied to investigate the effect of warming from the rest to the growth phase on cambium phenology, intra-annual stem growth dynamics and ring wood features in Picea abies (L.) H.Karst. We hypothesized that reduced winter chilling induces a postponed cambium dormancy release and decrease of stem growth, while high temperature during cell wall lignification determines an enrichment of latewood-like cells. The heating device was designed to maintain a +5 °C temperature delta with respect to air temperature, thus allowing an authentic scenario of warming. Continuous stem heating from the rest (November) to the growing phase determined, at the beginning of radial growth, a reduction of the number of cell layers in the cambium, higher number of cell layers in the wall thickening phase and an asynchronous stem radial growth when comparing heated and ambient saplings. Nevertheless, heating did not induce changes in the number of produced cell layers at the end of the growing season. The analyses of two-photon fluorescence images showed that woody rings formed during heating were enriched with latewood-like cells. Our results showed that an increase of 5 °C of temperature applied to the stem from the rest to growth might not influence, as generally reported, onset of cambial activity, but it could affect xylem morphology of Norway spruce in mountain environments.


Assuntos
Picea , Biodiversidade , Câmbio , Calefação , Picea/fisiologia , Estações do Ano , Temperatura , Madeira , Xilema/fisiologia
3.
Front Plant Sci ; 12: 613643, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584770

RESUMO

Significant alterations of cambial activity might be expected due to climate warming, leading to growing season extension and higher growth rates especially in cold-limited forests. However, assessment of climate-change-driven trends in intra-annual wood formation suffers from the lack of direct observations with a timespan exceeding a few years. We used the Vaganov-Shashkin process-based model to: (i) simulate daily resolved numbers of cambial and differentiating cells; and (ii) develop chronologies of the onset and termination of specific phases of cambial phenology during 1961-2017. We also determined the dominant climatic factor limiting cambial activity for each day. To asses intra-annual model validity, we used 8 years of direct xylogenesis monitoring from the treeline region of the Krkonose Mts. (Czechia). The model exhibits high validity in case of spring phenological phases and a seasonal dynamics of tracheid production, but its precision declines for estimates of autumn phenological phases and growing season duration. The simulations reveal an increasing trend in the number of tracheids produced by cambium each year by 0.42 cells/year. Spring phenological phases (onset of cambial cell growth and tracheid enlargement) show significant shifts toward earlier occurrence in the year (for 0.28-0.34 days/year). In addition, there is a significant increase in simulated growth rates during entire growing season associated with the intra-annual redistribution of the dominant climatic controls over cambial activity. Results suggest that higher growth rates at treeline are driven by (i) temperature-stimulated intensification of spring cambial kinetics, and (ii) decoupling of summer growth rates from the limiting effect of low summer temperature due to higher frequency of climatically optimal days. Our results highlight that the cambial kinetics stimulation by increasing spring and summer temperatures and shifting spring phenology determine the recent growth trends of treeline ecosystems. Redistribution of individual climatic factors controlling cambial activity during the growing season questions the temporal stability of climatic signal of cold forest chronologies under ongoing climate change.

4.
Front Plant Sci ; 7: 705, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27252721

RESUMO

Mediterranean tree rings are characterized by intra-annual density fluctuations (IADFs) due to partly climate-driven cambial activity. IADFs are used as structural signals to gain information on relations between environmental conditions and eco-physiological processes during xylogenesis, with intra-annual resolution. To reach an unbiased synchronization of the IADF position within tree rings and seasonal fluctuations in environmental conditions, it is necessary to know the timing of cambial activity and wood formation, which are species- and site-specific processes. We applied the microcoring technique to analyze xylogenesis in Pinus halepensis and Arbutus unedo. To the best of our knowledge, this is the first attempt to study xylogenesis in a hardwood species forming frequent IADFs. Both species co-occur at a site in southern Italy characterized by a Mediterranean climate. To facilitate tree-ring dating and identification of IADFs, we performed traditional dendroecological analysis. We analyzed xylogenesis during summer, which is considered a constraint for xylogenesis and a trigger for IADF formation. We followed the different phases of cell development in the current wood increment with the aim of evaluating whether and which type of IADFs were formed. We additionally analyzed the same phases again in September and in winter to verify the possible formation of IADFs in fall and whether cell production and differentiation was completed by the end of the calendar year. Both species formed the same type of IADFs (earlywood-like cells within latewood), due to temporary growth restoration triggered by rain events during the period of summer drought. At the end of the calendar year, no cells in the phases of enlargement and secondary cell wall deposition occurred. A. unedo was more sensitive than P. halepensis because IADFs were formed earlier in the season and were more frequent in the tree-ring series. The dendro-anatomical approach, combining analysis of tree-ring series and of xylogenesis, helped to detect the period of IADF formation in the two species. Results are discussed in functional terms, highlighting the environmental conditions triggering IADFs, and also in methodological terms, evaluating the applicability of xylogenesis analysis in Mediterranean woods, especially when the formation of IADFs is not uniform around the stem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA