Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Transfusion ; 64(4): 742-750, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38407504

RESUMO

Plerixafor (PLER), a reversible antagonist of the CXC chemokine receptor type 4, has been in clinical use for mobilization of blood grafts for autologous hematopoietic cell transplantation (AHCT) for about 15 years. Initially PLER was investigated in placebo-controlled trials with the granulocyte colony-stimulating factor (G-CSF) filgrastim. It has also been used in combination with chemotherapy plus G-CSF in patients who had failed a previous mobilization attempt or appeared to mobilize poorly with current mobilization (preemptive use). This review summarizes what is known regarding addition of PLER to standard mobilization regimens. PLER increases mobilization of CD34+ cells, decreases the number of apheresis sessions needed to achieve collection targets and increases the proportion of patients who can proceed to AHCT. It appears also to increase the amount of various lymphocyte subsets in the grafts collected. In general, hematologic recovery after AHCT has been comparable to patients mobilized without PLER, although slower platelet recovery has been observed in some studies of patients who mobilize poorly. In phase III studies, long-term outcome has been comparable to patients mobilized without PLER. This also appears to be the case in patients receiving plerixafor for poor or suboptimal mobilization of CD34+ cells. In practice, PLER is safe and has not been shown to increase tumor cell mobilization.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Compostos Heterocíclicos , Mieloma Múltiplo , Humanos , Mobilização de Células-Tronco Hematopoéticas , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/uso terapêutico , Fator Estimulador de Colônias de Granulócitos/farmacologia , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Transplante Autólogo , Mieloma Múltiplo/terapia , Antígenos CD34/metabolismo
2.
MedComm (2020) ; 5(2): e494, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38405059

RESUMO

Lung tissue has a certain regenerative ability and triggers repair procedures after injury. Under controllable conditions, lung tissue can restore normal structure and function. Disruptions in this process can lead to respiratory system failure and even death, causing substantial medical burden. The main types of respiratory diseases are chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and acute respiratory distress syndrome (ARDS). Multiple cells, such as lung epithelial cells, endothelial cells, fibroblasts, and immune cells, are involved in regulating the repair process after lung injury. Although the mechanism that regulates the process of lung repair has not been fully elucidated, clinical trials targeting different cells and signaling pathways have achieved some therapeutic effects in different respiratory diseases. In this review, we provide an overview of the cell type involved in the process of lung regeneration and repair, research models, and summarize molecular mechanisms involved in the regulation of lung regeneration and fibrosis. Moreover, we discuss the current clinical trials of stem cell therapy and pharmacological strategies for COPD, IPF, and ARDS treatment. This review provides a reference for further research on the molecular and cellular mechanisms of lung regeneration, drug development, and clinical trials.

3.
Protist ; 175(3): 126035, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688055

RESUMO

The protist Euglena gracilis has various trophic modes including heterotrophy and photoheterotrophy. To investigate how cultivation mode influences metabolic regulation, the chemical composition of cellular metabolites of Euglena gracilis grown under heterotrophic and photoheterotrophic conditions was monitored from the early exponential phase to the mid-stationary phase using two different techniques, i.e, nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HRMS). The combined metabolomics approach allowed an in-depth understanding of the mechanism of photoheterotrophic and heterotrophic growth for biomolecule production. Heterotrophic conditions promoted the production of polar amino and oxygenated compounds such as proteins and polyphenol compounds, especially at the end of the exponential phase while photoheterotrophic cells enhanced the production of organoheterocyclic compounds, carbohydrates, and alkaloids.


Assuntos
Euglena gracilis , Processos Heterotróficos , Euglena gracilis/metabolismo , Euglena gracilis/crescimento & desenvolvimento , Processos Fototróficos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Metabolômica , Metaboloma
4.
Cancers (Basel) ; 16(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39061190

RESUMO

Early lymphocyte recovery as manifested by an absolute lymphocyte count at d+15 (ALC-15) ≥ 0.5 × 109/L after autologous hematopoietic stem cell transplantation (AHCT) has been associated with a better outcome. This prospective multicenter study aimed to clarify factors associated with ALC-15 ≥ 0.5 × 109/L after AHCT among 178 patients with non-Hodgkin lymphoma. The mobilization capacity, as manifested by peak blood CD34+ cell numbers > 45 × 106/L correlated with higher ALC-15 levels (p = 0.020). In addition, the amount of CD3+CD4+ T cells > 31.8 × 106/kg in the infused graft predicted ALC-15 ≥ 0.5 × 109/L (p < 0.001). Also, the number of infused graft CD3+CD8+ T cells > 28.8 × 106/kg (p = 0.017) and NK cells > 4.4 × 106/kg was linked with higher ALC-15 (p < 0.001). The two-year progression-free survival after AHCT was significantly better in patients with ALC-15 ≥ 0.5 × 109/L (74 vs. 57%, p = 0.027). The five-year OS in patients with higher ALC-15 was 78% vs. 60% in those with lower ALC-15 (p = 0.136). To conclude, the mobilization capacity of CD34+ cells and detailed measures of graft cellular content mark prognostic tools that predict ALC-15 ≥ 0.5 × 109/L, which is associated with a better outcome in NHL patients after AHCT.

5.
Front Immunol ; 14: 1272143, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38193088

RESUMO

The gut is a crucial organ in insect defense against various pathogens and harmful substances in their environment and diet. Distinct insect gut compartments possess unique functionalities contributing to their physiological processes, including immunity. The insect gut's cellular composition is vital for cellular and humoral immunity. The peritrophic membrane, mucus layer, lumen, microvilli, and various gut cells provide essential support for activating and regulating immune defense mechanisms. These components also secrete molecules and enzymes that are imperative in physiological activities. Additionally, the gut microbiota initiates various signaling pathways and produces vitamins and minerals that help maintain gut homeostasis. Distinct immune signaling pathways are activated within the gut when insects ingest pathogens or hazardous materials. The pathway induced depends on the infection or pathogen type; include immune deficiency (imd), Toll, JAK/STAT, Duox-ROS, and JNK/FOXO regulatory pathways. These pathways produce different antimicrobial peptides (AMPs) and maintain gut homeostasis. Furthermore, various signaling mechanisms within gut cells regulate insect gut recovery following infection. Although some questions regarding insect gut immunity in different species require additional study, this review provides insights into the insect gut's structure and composition, commensal microorganism roles in Drosophila melanogaster and Tenebrio molitor life cycles, different signaling pathways involved in gut immune systems, and the insect gut post-infection recovery through various signaling mechanisms.


Assuntos
Drosophila melanogaster , Transdução de Sinais , Animais , Homeostase , Peptídeos Antimicrobianos , Insetos
6.
Med Genet ; 34(4): 261-273, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38836091

RESUMO

Over the last decade, single-cell sequencing has transformed many fields. It has enabled the unbiased molecular phenotyping of even whole organisms with unprecedented cellular resolution. In the field of human genetics, where the phenotypic consequences of genetic and epigenetic alterations are of central concern, this transformative technology promises to functionally annotate every region in the human genome and all possible variants within them at a massive scale. In this review aimed at the clinicians in human genetics, we describe the current status of the field of single-cell sequencing and its role for human genetics, including how the technology works as well as how it is being applied to characterize and monitor diseases, to develop human cell atlases, and to annotate the genome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA