Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38894205

RESUMO

By integrating sensing capability into wireless communication, wireless sensing technology has become a promising contactless and non-line-of-sight sensing paradigm to explore the dynamic characteristics of channel state information (CSI) for recognizing human behaviors. In this paper, we develop an effective device-free human gesture recognition (HGR) system based on WiFi wireless sensing technology in which the complementary CSI amplitude and phase of communication link are jointly exploited. To improve the quality of collected CSI, a linear transform-based data processing method is first used to eliminate the phase offset and noise and to reduce the impact of multi-path effects. Then, six different time and frequency domain features are chosen for both amplitude and phase, including the mean, variance, root mean square, interquartile range, energy entropy and power spectral entropy, and a feature selection algorithm to remove irrelevant and redundant features is proposed based on filtering and principal component analysis methods, resulting in the construction of a feature subspace to distinguish different gestures. On this basis, a support vector machine-based stacking algorithm is proposed for gesture classification based on the selected and complementary amplitude and phase features. Lastly, we conduct experiments under a practical scenario with one transmitter and receiver. The results demonstrate that the average accuracy of the proposed HGR system is 98.3% and that the F1-score is over 97%.

2.
Sensors (Basel) ; 24(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38610322

RESUMO

This paper introduces an innovative non-contact heart rate monitoring method based on Wi-Fi Channel State Information (CSI). This approach integrates both amplitude and phase information of the CSI signal through rotational projection, aiming to optimize the accuracy of heart rate estimation in home environments. We develop a frequency domain subcarrier selection algorithm based on Heartbeat to subcomponent ratio (HSR) and design a complete set of signal filtering and subcarrier selection processes to further enhance the accuracy of heart rate estimation. Heart rate estimation is conducted by combining the peak frequencies of multiple subcarriers. Extensive experimental validations demonstrate that our method exhibits exceptional performance under various environmental conditions. The experimental results show that our subcarrier selection method for heart rate estimation achieves an average accuracy of 96.8%, with a median error of only 0.8 bpm, representing an approximately 20% performance improvement over existing technologies.

3.
Sensors (Basel) ; 24(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38339579

RESUMO

The recognition of human activity is crucial as the Internet of Things (IoT) progresses toward future smart homes. Wi-Fi-based motion-recognition stands out due to its non-contact nature and widespread applicability. However, the channel state information (CSI) related to human movement in indoor environments changes with the direction of movement, which poses challenges for existing Wi-Fi movement-recognition methods. These challenges include limited directions of movement that can be detected, short detection distances, and inaccurate feature extraction, all of which significantly constrain the wide-scale application of Wi-Fi action-recognition. To address this issue, we propose a direction-independent CSI fusion and sharing model named CSI-F, one which combines Convolutional Neural Networks (CNN) and Gated Recurrent Units (GRU). Specifically, we have introduced a series of signal-processing techniques that utilize antenna diversity to eliminate random phase shifts, thereby removing noise influences unrelated to motion information. Later, by amplifying the Doppler frequency shift effect through cyclic actions and generating a spectrogram, we further enhance the impact of actions on CSI. To demonstrate the effectiveness of this method, we conducted experiments on datasets collected in natural environments. We confirmed that the superposition of periodic actions on CSI can improve the accuracy of the process. CSI-F can achieve higher recognition accuracy compared with other methods and a monitoring coverage of up to 6 m.


Assuntos
Internet das Coisas , Movimento , Humanos , Movimento (Física) , Efeito Doppler , Meio Ambiente
4.
Sensors (Basel) ; 23(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37447679

RESUMO

Indoor localization is one of the key techniques for location-based services (LBSs), which play a significant role in applications in confined spaces, such as tunnels and mines. To achieve indoor localization in confined spaces, the channel state information (CSI) of WiFi can be selected as a feature to distinguish locations due to its fine-grained characteristics compared with the received signal strength (RSS). In this paper, two indoor localization approaches based on CSI fingerprinting were designed: amplitude-of-CSI-based indoor fingerprinting localization (AmpFi) and full-dimensional CSI-based indoor fingerprinting localization (FuFi). AmpFi adopts the amplitude of the CSI as the localization fingerprint in the offline phase, and in the online phase, the improved weighted K-nearest neighbor (IWKNN) is proposed to estimate the unknown locations. Based on AmpFi, FuFi is proposed, which considers all of the subcarriers in the MIMO system as the independent features and adopts the normalized amplitudes of the full-dimensional subcarriers as the fingerprint. AmpFi and FuFi were implemented on a commercial network interface card (NIC), where FuFi outperformed several other typical fingerprinting-based indoor localization approaches.

5.
Sensors (Basel) ; 23(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37420694

RESUMO

Recent advancements in target tracking using Wi-Fi signals and channel state information (CSI) have significantly improved the accuracy and efficiency of tracking mobile targets. However, there remains a gap in developing a comprehensive approach that combines CSI, an unscented Kalman filter (UKF), and a sole self-attention mechanism to accurately estimate the position, velocity, and acceleration of targets in real-time. Furthermore, optimizing the computational efficiency of such approaches is necessary for their applicability in resource-constrained environments. To bridge this gap, this research study proposes a novel approach that addresses these challenges. The approach leverages CSI data collected from commodity Wi-Fi devices and incorporates a combination of the UKF and a sole self-attention mechanism. By fusing these elements, the proposed model provides instantaneous and precise estimates of the target's position while considering factors such as acceleration and network information. The effectiveness of the proposed approach is demonstrated through extensive experiments conducted in a controlled test bed environment. The results exhibit a remarkable tracking accuracy level of 97%, affirming the model's ability to successfully track mobile targets. The achieved accuracy showcases the potential of the proposed approach for applications in human-computer interactions, surveillance, and security.


Assuntos
Aceleração , Algoritmos , Humanos , Computadores
6.
Sensors (Basel) ; 23(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36617094

RESUMO

In recent times, we have been witnessing the development of multiple applications and deployment of services through the indoors location of people as it allows the development of services of interest in areas related mainly to security, guiding people, or offering services depending on their localization. On the other hand, at present, the deployment of Wi-Fi networks is so advanced that a network can be found almost anywhere. In addition, security systems are more demanded and are implemented in many buildings. Thus, in order to provide a non intrusive presence detection system, in this manuscript, the development of a methodology is proposed which is able to detect human presence through the channel state information (CSI) of wireless communication networks based on the 802.11n standard. One of the main contributions of this standard is multiple-input multiple-output (MIMO) with orthogonal frequency division multiplexing (OFDM). This makes it possible to obtain channel state information for each subcarrier. In order to implement this methodology, an analysis and feature extraction in time-domain of CSI is carried out, and it is validated using different classification models trained through a series of samples that were captured in two different environments. The experiments show that the methodology presented in this manuscript obtains an average accuracy above 90%.


Assuntos
Extremidade Superior , Humanos
7.
Sensors (Basel) ; 23(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36904814

RESUMO

The past decade has demonstrated the potential of human activity recognition (HAR) with WiFi signals owing to non-invasiveness and ubiquity. Previous research has largely concentrated on enhancing precision through sophisticated models. However, the complexity of recognition tasks has been largely neglected. Thus, the performance of the HAR system is markedly diminished when tasked with increasing complexities, such as a larger classification number, the confusion of similar actions, and signal distortion To address this issue, we eliminated conventional convolutional and recurrent backbones and proposed WiTransformer, a novel tactic based on pure Transformers. Nevertheless, Transformer-like models are typically suited to large-scale datasets as pretraining models, according to the experience of the Vision Transformer. Therefore, we adopted the Body-coordinate Velocity Profile, a cross-domain WiFi signal feature derived from the channel state information, to reduce the threshold of the Transformers. Based on this, we propose two modified transformer architectures, united spatiotemporal Transformer (UST) and separated spatiotemporal Transformer (SST) to realize WiFi-based human gesture recognition models with task robustness. SST intuitively extracts spatial and temporal data features using two encoders, respectively. By contrast, UST can extract the same three-dimensional features with only a one-dimensional encoder, owing to its well-designed structure. We evaluated SST and UST on four designed task datasets (TDSs) with varying task complexities. The experimental results demonstrate that UST has achieved recognition accuracy of 86.16% on the most complex task dataset TDSs-22, outperforming the other popular backbones. Simultaneously, the accuracy decreases by at most 3.18% when the task complexity increases from TDSs-6 to TDSs-22, which is 0.14-0.2 times that of others. However, as predicted and analyzed, SST fails because of excessive lack of inductive bias and the limited scale of the training data.


Assuntos
Fontes de Energia Elétrica , Gestos , Humanos , Reconhecimento Psicológico , Sorbitol
8.
Sensors (Basel) ; 23(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37050651

RESUMO

Wi-Fi-based human activity recognition (HAR) has gained considerable attention recently due to its ease of use and the availability of its infrastructures and sensors. Channel state information (CSI) captures how Wi-Fi signals are transmitted through the environment. Using channel state information of the received signals transmitted from Wi-Fi access points, human activity can be recognized with more accuracy compared with the received signal strength indicator (RSSI). However, in many scenarios and applications, there is a serious limit in the volume of training data because of cost, time, or resource constraints. In this study, multiple deep learning models have been trained for HAR to achieve an acceptable accuracy level while using less training data compared to other machine learning techniques. To do so, a pretrained encoder which is trained using only a limited number of data samples, is utilized for feature extraction. Then, by using fine-tuning, this encoder is utilized in the classifier, which is trained by a fraction of the rest of the data, and the training is continued alongside the rest of the classifier's layers. Simulation results show that by using only 50% of the training data, there is a 20% improvement compared with the case where the encoder is not used. We also showed that by using an untrainable encoder, an accuracy improvement of 11% using 50% of the training data is achievable with a lower complexity level.


Assuntos
Atividades Humanas , Aprendizado de Máquina , Humanos , Simulação por Computador
9.
Sensors (Basel) ; 23(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139572

RESUMO

The use of wireless signals for device-free activity recognition and precise indoor positioning has gained significant popularity recently. By taking advantage of the characteristics of the received signals, it is possible to establish a mapping between these signals and human activities. Existing approaches for detecting human walking direction have encountered challenges in adapting to changes in the surrounding environment or different people. In this paper, we propose a new approach that uses the channel state information of received wireless signals, a Hampel filter to remove the outliers, a Discrete wavelet transform to remove the noise and extract the important features, and finally, machine and deep learning algorithms to identify the walking direction for different people and in different environments. Through experimentation, we demonstrate that our approach achieved accuracy rates of 92.9%, 95.1%, and 89% in detecting human walking directions for untrained data collected from the classroom, the meeting room, and both rooms, respectively. Our results highlight the effectiveness of our approach even for people of different genders, heights, and environments, which utilizes machine and deep learning algorithms for low-cost deployment and device-free detection of human activities in indoor environments.


Assuntos
Aprendizado Profundo , Feminino , Masculino , Humanos , Tecnologia sem Fio , Algoritmos , Caminhada
10.
Sensors (Basel) ; 23(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36991657

RESUMO

Non-Orthogonal Multiple Access (NOMA) has become a promising evolution with the emergence of fifth-generation (5G) and Beyond-5G (B5G) rollouts. The potentials of NOMA are to increase the number of users, the system's capacity, massive connectivity, and enhance the spectrum and energy efficiency in future communication scenarios. However, the practical deployment of NOMA is hindered by the inflexibility caused by the offline design paradigm and non-unified signal processing approaches of different NOMA schemes. The recent innovations and breakthroughs in deep learning (DL) methods have paved the way to adequately address these challenges. The DL-based NOMA can break these fundamental limits of conventional NOMA in several aspects, including throughput, bit-error-rate (BER), low latency, task scheduling, resource allocation, user pairing and other better performance characteristics. This article aims to provide firsthand knowledge of the prominence of NOMA and DL and surveys several DL-enabled NOMA systems. This study emphasizes Successive Interference Cancellation (SIC), Channel State Information (CSI), impulse noise (IN), channel estimation, power allocation, resource allocation, user fairness and transceiver design, and a few other parameters as key performance indicators of NOMA systems. In addition, we outline the integration of DL-based NOMA with several emerging technologies such as intelligent reflecting surfaces (IRS), mobile edge computing (MEC), simultaneous wireless and information power transfer (SWIPT), Orthogonal Frequency Division Multiplexing (OFDM), and multiple-input and multiple-output (MIMO). This study also highlights diverse, significant technical hindrances in DL-based NOMA systems. Finally, we identify some future research directions to shed light on paramount developments needed in existing systems as a probable to invigorate further contributions for DL-based NOMA system.

11.
Sensors (Basel) ; 23(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37177722

RESUMO

The relentless expansion of communications services and applications in 5G networks and their further projected growth bring the challenge of necessary spectrum scarcity, a challenge which might be overcome using the concept of cognitive radio. Furthermore, an extremely high number of low-power devices are introduced by the concept of the Internet of Things (IoT), which also requires efficient energy usage and practically applicable device powering. Motivated by these facts, in this paper, we analyze a wirelessly powered underlay cognitive system based on a realistic case in which statistical channel state information (CSI) is available. In the system considered, the primary and the cognitive networks share the same spectrum band under the constraint of an interference threshold and a maximal tolerable outage permitted by the primary user. To adopt the system model in realistic IoT application scenarios in which network nodes are mobile, we consider the randomly moving cognitive user receiver. For the analyzed system, we derive the closed-form expressions for the outage probability, the outage capacity, and the ergodic capacity. The obtained analytical results are corroborated by an independent simulation method.

12.
Entropy (Basel) ; 25(5)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37238483

RESUMO

Generalized mutual information (GMI) is used to compute achievable rates for fading channels with various types of channel state information at the transmitter (CSIT) and receiver (CSIR). The GMI is based on variations of auxiliary channel models with additive white Gaussian noise (AWGN) and circularly-symmetric complex Gaussian inputs. One variation uses reverse channel models with minimum mean square error (MMSE) estimates that give the largest rates but are challenging to optimize. A second variation uses forward channel models with linear MMSE estimates that are easier to optimize. Both model classes are applied to channels where the receiver is unaware of the CSIT and for which adaptive codewords achieve capacity. The forward model inputs are chosen as linear functions of the adaptive codeword's entries to simplify the analysis. For scalar channels, the maximum GMI is then achieved by a conventional codebook, where the amplitude and phase of each channel symbol are modified based on the CSIT. The GMI increases by partitioning the channel output alphabet and using a different auxiliary model for each partition subset. The partitioning also helps to determine the capacity scaling at high and low signal-to-noise ratios. A class of power control policies is described for partial CSIR, including a MMSE policy for full CSIT. Several examples of fading channels with AWGN illustrate the theory, focusing on on-off fading and Rayleigh fading. The capacity results generalize to block fading channels with in-block feedback, including capacity expressions in terms of mutual and directed information.

13.
Entropy (Basel) ; 25(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36673263

RESUMO

In this paper, the security of two-way relay communications in the presence of a passive eavesdropper is investigated. Two users communicate via a relay that depends solely on energy harvesting to amplify and forward the received signals. Time switching is employed at the relay to harvest energy and obtain user information. A friendly jammer is utilized to hinder the eavesdropping from wiretapping the information signal. The eavesdropper employs maximal ratio combining and selection combining to improve the signal-to-noise ratio of the wiretapped signals. Geometric programming (GP) is used to maximize the secrecy capacity of the system by jointly optimizing the time switching ratio of the relay and transmit power of the two users and jammer. The impact of imperfect channel state information at the eavesdropper for the links between the eavesdropper and the other nodes is determined. Further, the secrecy capacity when the jamming signal is not perfectly cancelled at the relay is examined. The secrecy capacity is shown to be greater with a jammer compared to the case without a jammer. The effect of the relay, jammer, and eavesdropper locations on the secrecy capacity is also studied. It is shown that the secrecy capacity is greatest when the relay is at the midpoint between the users. The closer the jammer is to the eavesdropper, the higher the secrecy capacity as the shorter distance decreases the signal-to-noise ratio of the jammer.

14.
Sensors (Basel) ; 22(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35891044

RESUMO

With the increasing demand for wireless location services, it is of great interest to reduce the deployment cost of positioning systems. For this reason, indoor positioning based on WiFi has attracted great attention. Compared with the received signal strength indicator (RSSI), channel state information (CSI) captures the radio propagation environment more accurately. However, it is necessary to take signal bandwidth, interferences, noises, and other factors into account for accurate CSI-based positioning. In this paper, we propose a novel dictionary filtering method that uses the direct weight determination method of a neural network to denoise the dictionary and uses compressive sensing (CS) to extract the channel impulse response (CIR). A high-precision time-of-arrival (TOA) is then estimated by peak search. A median value filtering algorithm is used to locate target devices based on the time-difference-of-arrival (TDOA) technique. We demonstrate the superior performance of the proposed scheme experimentally, using data collected with a WiFi positioning testbed. Compared with the fingerprint location method, the proposed location method does not require a site survey in advance and therefore enables a fast system deployment.


Assuntos
Redes Neurais de Computação , Tecnologia sem Fio , Algoritmos
15.
Sensors (Basel) ; 22(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36501940

RESUMO

In this paper, we address the design of multi-user multiple-input single-output (MU-MISO) precoders for indoor visible light communication (VLC) systems. The goal is to minimize the transmitted optical power per light emitting diode (LED) under imperfect channel state information (CSI) at the transmitter side. Robust precoders for imperfect CSI available in the literature include noisy and outdated channel estimation cases. However, to the best of our knowledge, no work has considered adding robustness against channel quantization. In this paper, we fill this gap by addressing the case of imperfect CSI due to the quantization of VLC channels. We model the quantization errors in the CSI through polyhedric uncertainty regions. For polyhedric uncertainty regions and positive real channels, as is the case of VLC channels, we show that the robust precoder against channel quantization errors that minimizes the transmitted optical power while guaranteeing a target signal to noise plus interference ratio (SNIR) per user is the solution of a second order cone programming (SOCP) problem. Finally, we evaluate its performance under different quantization levels through numerical simulations.

16.
Sensors (Basel) ; 22(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35957237

RESUMO

WiFi localization based on channel state information (CSI) fingerprints has become the mainstream method for indoor positioning due to the widespread deployment of WiFi networks, in which fingerprint database building is critical. However, issues, such as insufficient samples or missing data in the collection fingerprint database, result in unbalanced training data for the localization system during the construction of the CSI fingerprint database. To address the above issue, we propose a deep learning-based oversampling method, called Self-Attention Synthetic Minority Oversampling Technique (SASMOTE), for complementing the fingerprint database to improve localization accuracy. Specifically, a novel self-attention encoder-decoder is firstly designed to compress the original data dimensionality and extract rich features. The synthetic minority oversampling technique (SMOTE) is adopted to oversample minority class data to achieve data balance. In addition, we also construct the corresponding CSI fingerprinting dataset to train the model. Finally, extensive experiments are performed on different data to verify the performance of the proposed method. The results show that our SASMOTE method can effectively solve the data imbalance problem. Meanwhile, the improved location model, 1D-MobileNet, is tested on the balanced fingerprint database to further verify the excellent performance of our proposed methods.

17.
Sensors (Basel) ; 22(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35632118

RESUMO

WiFi-based indoor positioning has attracted intensive research activities. While localization accuracy is steadily improving due to the application of advanced algorithms, the factors that affect indoor localization accuracy have not been sufficiently understood. Most localization algorithms used in changing indoor spaces are Angle-of-Arrival (AoA) based, and they deploy the conventional MUSIC algorithm. The localization accuracy can be achieved by algorithm improvements or joint localization that deploys multiple Access Points (APs). We performed an experiment that assessed the Test Point (TP) accuracy and distribution of results in a complex environment. The testing space was a 290 m2 three-room environment with three APs with 38 TPs. The joint localization using three APs was performed in the same test space. We developed and implemented a new algorithm for improved accuracy of joint localization. We analyzed the statistical characteristics of the results based on each TP and show that the local space-dependent factors are the key factors for localization accuracy. The most important factors that cause errors are distance, obstacles, corner locations, the location of APs, and the angular orientation of the antenna array. Compared with the well-known SpotFi algorithm, we achieved a mean accuracy (across all TPs) improvement of 46%. The unbiased joint localization median accuracy improved by 20% as compared to the best individual localization.

18.
Sensors (Basel) ; 23(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36616763

RESUMO

In some satellite Internet of Things (IoT) devices with terrain shielding, the qualities of the direct source-destination (S-D) channel are poor, requiring cooperative communications with multi-relays to be employed. In order to solve error propagation of current decode-and-forward (DF) on such occasions, an efficient polar coded selective decode-and-forward (SDF) cooperation method is proposed with a new decision threshold derived from channel state information (CSI). First, the proposed threshold is derived from the CSI by exploiting the channel gain ratio of optimal relay-destination link (R-D) with source-relay (S-R) link. The above R-D link possesses good channel quality among all links in the system. Second, when the channel gain ratio of certain relay links is larger than the aforementioned decision threshold, the source and all these relays cooperatively send messages together to the destination to accomplish perfect SDF transmission. Otherwise, all relays are frozen and the messages are directly transmitted through the S-D link. If it fails anyway, a retransmission is subsequently tried in the next transmission cycle. In addition, a polar code for fading channels is designed and adaptively adjusted to a proper code rate according to channel quality to attain good bit error rate (BER) performance. Simulation results show that the proposed scheme achieves about 0.9 and 0.5 dB gain at BER of 10-4, respectively, in multi-relay cooperative communications with multi-path fading channels compared with those of non-cooperation and existing polar coded cooperation channels. Therefore, the proposed polar coded SDF (PCSDF) scheme can improve both the BER and the outage probability (OP) performance in multi-relay cooperative systems, making it quite suitable for heterogeneous network applications in cooperative satellite IoT systems involving sixth-generation (6G) communications.

19.
Sensors (Basel) ; 23(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36616954

RESUMO

Human activity recognition (HAR) has emerged as a significant area of research due to its numerous possible applications, including ambient assisted living, healthcare, abnormal behaviour detection, etc. Recently, HAR using WiFi channel state information (CSI) has become a predominant and unique approach in indoor environments compared to others (i.e., sensor and vision) due to its privacy-preserving qualities, thereby eliminating the need to carry additional devices and providing flexibility of capture motions in both line-of-sight (LOS) and non-line-of-sight (NLOS) settings. Existing deep learning (DL)-based HAR approaches usually extract either temporal or spatial features and lack adequate means to integrate and utilize the two simultaneously, making it challenging to recognize different activities accurately. Motivated by this, we propose a novel DL-based model named spatio-temporal convolution with nested long short-term memory (STC-NLSTMNet), with the ability to extract spatial and temporal features concurrently and automatically recognize human activity with very high accuracy. The proposed STC-NLSTMNet model is mainly comprised of depthwise separable convolution (DS-Conv) blocks, feature attention module (FAM) and NLSTM. The DS-Conv blocks extract the spatial features from the CSI signal and add feature attention modules (FAM) to draw attention to the most essential features. These robust features are fed into NLSTM as inputs to explore the hidden intrinsic temporal features in CSI signals. The proposed STC-NLSTMNet model is evaluated using two publicly available datasets: Multi-environment and StanWiFi. The experimental results revealed that the STC-NLSTMNet model achieved activity recognition accuracies of 98.20% and 99.88% on Multi-environment and StanWiFi datasets, respectively. Its activity recognition performance is also compared with other existing approaches and our proposed STC-NLSTMNet model significantly improves the activity recognition accuracies by 4% and 1.88%, respectively, compared to the best existing method.


Assuntos
Atividades Humanas , Redes Neurais de Computação , Humanos , Movimento (Física)
20.
Sensors (Basel) ; 22(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36433335

RESUMO

With the increasing demand for human-computer interaction and health monitoring, human behavior recognition with device-free patterns has attracted extensive attention. The fluctuations of the Wi-Fi signal caused by human actions in a Wi-Fi coverage area can be used to precisely identify the human skeleton and pose, which effectively overcomes the problems of the traditional solution. Although many promising results have been achieved, no survey summarizes the research progress. This paper aims to comprehensively investigate and analyze the latest applications of human behavior recognition based on channel state information (CSI) and the human skeleton. First, we review the human profile perception and skeleton recognition progress based on wireless perception technologies. Second, we summarize the general framework of precise pose recognition, including signal preprocessing methods, neural network models, and performance results. Then, we classify skeleton model generation methods into three categories and emphasize the crucial difference among these typical applications. Furthermore, we discuss two aspects, such as experimental scenarios and recognition targets. Finally, we conclude the paper by summarizing the issues in typical systems and the main research directions for the future.


Assuntos
Redes Neurais de Computação , Tecnologia sem Fio , Humanos , Atividades Humanas , Esqueleto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA