Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Tetrahedron ; 1622024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39006909

RESUMO

Ciguatera poisoning occurs throughout subtropical and tropical regions globally. The Virgin Islands in the Caribbean Sea is a known hyperendemic region for ciguatera and has been associated with Caribbean ciguatoxin (C-CTX) contamination in fish. An algal C-CTX (C-CTX5) was identified in Gambierdiscus silvae and G. caribeaus isolated from benthic algal samples collected in waters south St. Thomas, US Virgin Islands. The highest CTX-producing isolate, G. silvae 1602 SH-6, was grown at large-scale to isolate sufficient C-CTX5 for structural confirmation by NMR spectroscopy. A series of orthogonal extraction and fractionation procedures resulted in purification of approximately 40 µg of C-CTX5, as estimated by quantitative NMR. A suite of 1D and 2D NMR experiments were acquired that verified the structure originally proposed for C-CTX5. The structural confirmation and successful isolation of C-CTX5 opens the way for work on the stability, toxicology and biotransformation of C-CTXs, as well as for the production of quantitative reference materials for analytical method development and validation. The strategies developed for purification of C-CTX5 may also apply to isolation and purification of CTXs from the Pacific Ocean and other regions.

2.
Mar Drugs ; 22(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38535460

RESUMO

The genus Gambierdiscus produces an array of bioactive hydrophilic and lipophilic secondary metabolites that range in mode of action and toxicity. In this study, the metabolite fingerprint was mapped for thirteen Gambierdiscus, five Coolia and two Fukuyoa species (34 isolates) by assessing the production of 56 characterised secondary metabolites. Gambierdiscus polynesiensis was the only species to produce Pacific-ciguatoxin-3B (P-CTX3B), P-CTX3C, iso-P-CTX3B/C, P-CTX4A, P-CTX4B and iso-P-CTX4A/B. G. australes produced maitotoxin-1 (MTX-1) and MTX-5, G. cheloniae produced MTX-6 and G. honu produced MTX-7. Ubiquitous production of 44-methylgambierone was observed amongst all the Gambierdiscus isolates, with nine species also producing gambierone. Additional gambierone analogues, including anhydrogambierone (tentatively described herein), were also detected in all Gambierdiscus species, two Coolia and two Fukuyoa species. Gambieroxide was detected in G. lewisii and G. pacificus and gambieric acid A was detected in ten Gambierdiscus species, with G. australes (CAWD381) being the only isolate to produce gambieric acids A-D. This study has demonstrated that the isolates tested to date produce the known CTXs or MTXs, but not both, and highlighted several species that produced 'unknown' compounds displaying characteristics of cyclic polyethers, which will be the focus of future compound discovery efforts.


Assuntos
Ciguatoxinas , Dinoflagellida , Éteres , Sorogrupo
3.
Foodborne Pathog Dis ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39392108

RESUMO

This study examined data from the Centers for Disease Control and Prevention's National Outbreak Reporting System between 2001 and 2021 for confirmed outbreaks of foodborne illness due to Ciguatoxin in the United States. Previous research into Ciguatoxin illness in the United States has focused on specific states or territories-namely Hawaii, Florida, Puerto Rico, and the Virgin Islands-meaning the national distribution of outbreaks remains unclear. In addition, while specific categories of seafood (e.g., reef fish) are known to carry elevated risk of illness due to Ciguatoxin poisoning, it remains unclear the extent to which specific seafood items are associated with the odds of being hospitalized in an outbreak. This study calculated descriptive statistics for the distribution of outbreaks by state, season, site of exposure, and implicated seafood item. Then, binomial regression was used to assess the relationship between the implicated seafood item in an outbreak and hospitalization. Results provided evidence that knowing the implicated seafood item in an outbreak is associated with the odds of hospitalization (χ25 = 33.023, p < 0.0001). Even when a seafood item was found to be associated with elevated odds of hospitalization, not all cases involved hospitalization. This finding aligns with Ciguatoxin poisoning case reports, noting that key epidemiological factors include not just the seafood item consumed but also the quantity and the part consumed (e.g., the head). In conclusion, public health officials should consider Ciguatoxin poisoning outbreaks as multidimensional and utilize information about the seafood consumed as well as the quantity and parts of the seafood consumed.

4.
Shokuhin Eiseigaku Zasshi ; 65(3): 72-77, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-39034139

RESUMO

Ciguatera poisoning (CP) is one of the most frequent seafood poisonings across the globe. CP results from the consumption of fish flesh that has accumulated principal toxins known as ciguatoxins (CTXs), and it mainly occurs in tropical and subtropical regions. In Japan, incidents of CP have been reported primarily from Okinawa and Amami Islands in the subtropical area. Meanwhile, there have also been reports from Mainland sporadically. Since the amount of CTXs contained in fish flesh is extremely low, a highly sensitive detection method by LC-MS/MS is required. But the currently reported detection method is applicable only to specific equipment, and many laboratories have difficulty to respond CP. In this study, to prepare for the risk of nationwide CP, we researched a universal analytical method for CTXs based on LC-MS/MS. Using a water/acetonitrile mobile phase supplemented with lithium hydroxide and formic acid gave rise to prominent peaks of the stable [M+Li]+ions. As the [M+Li]+ions did not produce valid product ions even with high collision energy, the [M+Li]+ions of each analog were set for both precursor and product ions ([M+Li]+>[M+Li]+) and monitored under the multiple reaction monitoring (MRM) mode. With the method described above, analyses of nine CTX congeners were carried out. The limit of detection (LOD, S/N>5) and quantitation (LOQ, S/N>10) were estimated as 0.005-0.030 ng/mL and 0.010-0.061 ng/mL, respectively. When the 1 mL of extract solution is prepared from 5 g of the fish tissue, the LOD and LOQ will be at 0.001-0.006 µg/kg and 0.002-0.012 µg/kg, respectively. This result indicates that we could detect the required level of 0.175 µg/kg CTX1B equivalent in fish flesh which is recommended for safe consumption in Japan. This method is considered to be a universal analytical method without depending on the specific equipment. Thus it could contribute to improving the CP investigations in nationwide laboratories.


Assuntos
Ciguatoxinas , Análise de Alimentos , Contaminação de Alimentos , Animais , Ciguatera/diagnóstico , Ciguatoxinas/análise , Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Japão , Espectrometria de Massa com Cromatografia Líquida , Alimentos Marinhos/análise , Espectrometria de Massas em Tandem/métodos
5.
Chemistry ; 29(72): e202303121, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37830907

RESUMO

The fully functionalized A-F fragment of the Pacific ciguatoxin CTX3C has been synthesized from a derivative of D-glucal, which serves as the B-ring. Rings A and C were introduced to either side of ring B by ring-closing diene and enyne metathesis (RCM). The seven-membered D-ring and eight-membered E-ring were assembled by iterative use of a six-step reaction sequence in which RCM was used for ring construction and Tsuji-Trost allylation was employed for subsequent stereoselective functionalization. The nine-membered F-ring was formed by use of an RCM reaction and bears the functionality required for attachment of the I-M fragment and subsequent closure of rings G and H.

6.
Environ Res ; 207: 112164, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34627798

RESUMO

Invasive species can precede far-reaching environmental and economic consequences. In the Hawai'ian Archipelago Cephalopholis argus (family Serranidae) is an established invasive species, now recognized as the dominant local reef predator, negatively impacting the native ecosystem and local fishery. In this region, no official C. argus fishery exists, due to its association with Ciguatera seafood poisoning (CP); a severe intoxication in humans occurring after eating (primarily) fish contaminated with ciguatoxins (CTXs). Pre-harvest prediction of CP is currently not possible; partly due to the ubiquitous nature of the microalgae producing CTXs and the diverse bioaccumulation pathways of the toxins. This study investigated the perceived risk of CP in two geographically discrete regions (Leeward and Windward) around the main island of Hawai'i, guided by local fishers. C. argus was collected and investigated for CTXs using the U.S. Food and Drug Administration (FDA) CTX testing protocol (in vitro neuroblastoma N2a-assay and LC-MS/MS). Overall, 76% of fish (87/113) exceeded the FDA guidance value for CTX1B (0.01 ng g-1 tissue equivalents); determined by the N2a-assay. Maximum CTX levels were ≅2× higher at the Leeward vs Windward location and, respectively, 95% (64/67) and 54% (25/46) of fish were positive for CTX-like activity. Fisher persons and environmental understandings, regarding the existence of a geographic predictor (Leeward vs Windward) for harvest, were found to be (mostly) accurate as CTXs were detected in both locations and the local designation of C. argus as a risk for CP was confirmed. This study provides additional evidence that supports the previous conclusions that this species is a severe CP risk in the coastal food web of Hawai'i, and that ocean exposure (wave power) may be a prominent factor influencing the CTX content in fish within a hyperendemic region for CP.


Assuntos
Bass , Ciguatera , Ciguatoxinas , Animais , Cromatografia Líquida , Ciguatera/epidemiologia , Ciguatoxinas/análise , Ecossistema , Pesqueiros , Peixes/metabolismo , Havaí , Espectrometria de Massas em Tandem
7.
Arch Toxicol ; 96(9): 2621-2638, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35657391

RESUMO

Ciguatoxins are marine compounds that share a ladder-shaped polyether structure produced by dinoflagellates of the genus Gambierdiscus and Fukuyoa, and include maitotoxins (MTX1 and MTX3), ciguatoxins (CTX3C) and analogues (gambierone), components of one of the most frequent human foodborne illness diseases known as ciguatera fish poisoning. This disease was previously found primarily in tropical and subtropical areas but nowadays, the dinoflagellates producers of ciguatoxins had spread to European coasts. One decade ago, the European Food Safety Authority has raised the need to complete the toxicological available data for the ciguatoxin group of compounds. Thus, in this work, the in vivo effects of ciguatoxin-related compounds have been investigated using internationally adopted guidelines for the testing of chemicals. Intraperitoneal acute toxicity was tested for maitotoxin 1 at doses between 200 and 3200 ng/kg and the acute oral toxicity of Pacific Ciguatoxin CTX3C at 330 and 1050 ng/kg and maitotoxin 1 at 800 ng/kg were also evaluated showing not effects on mice survival after a 96 h observation period. Therefore, for the following experiments the oral subchronic doses were between 172 and 1760 ng/kg for gambierone, 10 and 102 ng/kg for Pacific Ciguatoxin CTX3C, 550 and 1760 ng/kg for maitotoxin 3 and 800, 2560 and 5000 ng/kg for maitotoxin 1. The results presented here raise the need to reevaluate the in vivo activity of these agents. Although the intraperitoneal lethal dose of maitotoxin 1 is assumed to be 50 ng/kg, without chemical purity identifications and description of the bioassay procedures, in this work, an intraperitoneal lethal dose of 1107 ng/kg was obtained. Therefore, the data presented here highlight the need to use a common procedure and certified reference material to clearly establish the levels of these environmental contaminants in food.


Assuntos
Ciguatera , Ciguatoxinas , Dinoflagellida , Animais , Bioensaio , Ciguatoxinas/química , Ciguatoxinas/toxicidade , Dinoflagellida/química , Humanos , Camundongos
8.
Mar Drugs ; 20(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35447910

RESUMO

Ciguatera Poisoning (CP) is caused by consumption of fish or invertebrates contaminated with ciguatoxins (CTXs). Presently CP is a public concern in some temperate regions, such as Macaronesia (North-Eastern Atlantic Ocean). Toxicity analysis was performed to characterize the fish species that can accumulate CTXs and improve understanding of the ciguatera risk in this area. For that, seventeen fish specimens comprising nine species were captured from coastal waters inMadeira and Selvagens Archipelagos. Toxicity was analysed by screening CTX-like toxicity with the neuroblastoma cell-based assay (neuro-2a CBA). Afterwards, the four most toxic samples were analysed with liquid chromatography-high resolution mass spectrometry (LC-HRMS). Thirteen fish specimens presented CTX-like toxicity in their liver, but only four of these in their muscle. The liver of one specimen of Muraena augusti presented the highest CTX-like toxicity (0.270 ± 0.121 µg of CTX1B equiv·kg-1). Moreover, CTX analogues were detected with LC-HRMS, for M. augusti and Gymnothorax unicolor. The presence of three CTX analogues was identified: C-CTX1, which had been previously described in the area; dihydro-CTX2, which is reported in the area for the first time; a putative new CTX m/z 1127.6023 ([M+NH4]+) named as putative C-CTX-1109, and gambieric acid A.


Assuntos
Ciguatera , Ciguatoxinas , Animais , Cromatografia Líquida , Ciguatoxinas/química , Peixes , Espectrometria de Massas
9.
Shokuhin Eiseigaku Zasshi ; 63(5): 190-194, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-36328475

RESUMO

Ciguatera fish poisoning (CFP) is recognized as the most frequent seafood poisoning due to the consumption of fish containing the principal toxins, ciguatoxins (CTXs). In Japan, CFP events have been reported annually from Okinawa and Amami Islands, locating subtropical regions. In addition, there have been reported several outbreaks due to consumption of the fish caught from the Pacific coast of the Mainland and they were often caused by the matured spotted knifejaw, Oplegnathus punctatus. As part of our research on CFP in Japan, we investigated CTXs analysis by LC-MS/MS on 176 individuals of O. punctatus (weight: 100-6,350 g, standard length: 13-60 cm) from the coast of the Mainland (Honshu, Shikoku, and Kyushu), Amami, Okinawa, and Ogasawara (Bonin) Islands. CTXs were detected from only two specimens collected from Okinawa. Total CTXs levels of the two specimens were at 0.014 and 0.040 µg/kg, respectively, exceeding FDA guidance level at 0.01 µg CTX1B equivalent/kg. However, they might be little risk of CFP because consuming over 1.5 kg of flesh is needed to develop intoxication. The toxins consisted of CTX1B analogs including CTX1B, 52-epi-54-deoxyCTX1B, CTX4A, and CTX4B, and no CTX3C analogs, supporting the finding that ciguatoxic fishes in Okinawan Waters containing only CTX1B analogs.


Assuntos
Ciguatera , Ciguatoxinas , Animais , Ciguatoxinas/toxicidade , Ciguatoxinas/análise , Cromatografia Líquida , Japão , Espectrometria de Massas em Tandem , Ciguatera/epidemiologia , Ciguatera/etiologia , Peixes
10.
Mar Drugs ; 19(8)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34436299

RESUMO

Dinoflagellate species of the genera Gambierdiscus and Fukuyoa are known to produce ciguatera poisoning-associated toxic compounds, such as ciguatoxins, or other toxins, such as maitotoxins. However, many species and strains remain poorly characterized in areas where they were recently identified, such as the western Mediterranean Sea. In previous studies carried out by our research group, a G. australes strain from the Balearic Islands (Mediterranean Sea) presenting MTX-like activity was characterized by LC-MS/MS and LC-HRMS detecting 44-methyl gambierone and gambieric acids C and D. However, MTX1, which is typically found in some G. australes strains from the Pacific Ocean, was not detected. Therefore, this study focuses on the identification of the compound responsible for the MTX-like toxicity in this strain. The G. australes strain was characterized not only using LC-MS instruments but also N2a-guided HPLC fractionation. Following this approach, several toxic compounds were identified in three fractions by LC-MS/MS and HRMS. A novel MTX analogue, named MTX5, was identified in the most toxic fraction, and 44-methyl gambierone and gambieric acids C and D contributed to the toxicity observed in other fractions of this strain. Thus, G. australes from the Mediterranean Sea produces MTX5 instead of MTX1 in contrast to some strains of the same species from the Pacific Ocean. No CTX precursors were detected, reinforcing the complexity of the identification of CTXs precursors in these regions.


Assuntos
Ciguatera , Dinoflagellida/química , Toxinas Marinhas/química , Oxocinas/química , Animais , Organismos Aquáticos , Mar Mediterrâneo , Relação Estrutura-Atividade
11.
Mar Drugs ; 19(7)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34356812

RESUMO

Ciguatera fish poisoning (CFP) and neurotoxic shellfish poisoning syndromes are induced by the consumption of seafood contaminated by ciguatoxins and brevetoxins. Both toxins cause sensory symptoms such as paresthesia, cold dysesthesia and painful disorders. An intense pruritus, which may become chronic, occurs also in CFP. No curative treatment is available and the pathophysiology is not fully elucidated. Here we conducted single-cell calcium video-imaging experiments in sensory neurons from newborn rats to study in vitro the ability of Pacific-ciguatoxin-2 (P-CTX-2) and brevetoxin-1 (PbTx-1) to sensitize receptors and ion channels, (i.e., to increase the percentage of responding cells and/or the response amplitude to their pharmacological agonists). In addition, we studied the neurotrophin release in sensory neurons co-cultured with keratinocytes after exposure to P-CTX-2. Our results show that P-CTX-2 induced the sensitization of TRPA1, TRPV4, PAR2, MrgprC, MrgprA and TTX-r NaV channels in sensory neurons. P-CTX-2 increased the release of nerve growth factor and brain-derived neurotrophic factor in the co-culture supernatant, suggesting that those neurotrophins could contribute to the sensitization of the aforementioned receptors and channels. Our results suggest the potential role of sensitization of sensory receptors/ion channels in the induction or persistence of sensory disturbances in CFP syndrome.


Assuntos
Ciguatera , Ciguatoxinas/farmacologia , Toxinas Marinhas/farmacologia , Oxocinas/farmacologia , Células Receptoras Sensoriais/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Organismos Aquáticos , Modelos Animais , Oceano Pacífico , Dor/metabolismo , Prurido/metabolismo , Ratos , Ratos Wistar
12.
Shokuhin Eiseigaku Zasshi ; 62(1): 8-13, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-33658463

RESUMO

Ciguatera fish poisoning (CFP), one of the most frequently occurring seafood poisonings due to marine finfish consumption, mainly affects the tropical and subtropical Indo-Pacific region and the Caribbean Sea. The principal class of toxins, ciguatoxins (CTXs) from the Pacific, includes more than 20 derivatives and are classified into two groups, CTX1B and CTX3C congeners, based on their skeletal structures. As part of risk management of CFP by the Japanese government, the import of certain species of fish into Japan is prohibited. Additionally, local governments recommend rejecting certain fish species caught in Japan. In this study, we used LC-MS/MS to analyze CTXs from 18 fish specimens belonging to 7 species that had been brought to a wholesale market but were disapproved for sale because of their potential danger of CFP. CTXs were detected in four specimens of Lutjanus bohar and one specimen of Variola louti. It was estimated that the two most poisonous specimens (no. 5: 0.348 µg/kg, no. 8: 0.362 µg/kg) had a toxicity of 0.05 MU/g. Consumption of 200 g of flesh from these fish could cause CFP. Thus, the guidance of the local government to disallow the sale of these fish species in the market contributed to the prevention of CFP.Only CTX1B congeners were detected in L. bohar (specimen no. 5), which had no record of the area where it captured from. It is presumed that the origin of specimen no. 5 was the same as that of the Okinawan L. bohar because the CTX compositions were similar. In two specimens (nos. 6 and 8) from Wakayama, both CTX1B and CTX3C congeners were detected. This is the first report to reveal the CTX profile in fish collected off the Honshu island in Japan.


Assuntos
Ciguatera , Ciguatoxinas , Animais , Cromatografia Líquida , Ciguatera/epidemiologia , Ciguatera/etiologia , Ciguatoxinas/análise , Peixes , Japão , Espectrometria de Massas em Tandem
13.
Shokuhin Eiseigaku Zasshi ; 62(5): 157-161, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-34732641

RESUMO

Ciguatera poisoning (CP) is one of the most abundant seafood poisonings in the world. CP frequently occurred in the tropical and subtropical Indo-Pacific Ocean and the Caribbean Sea. In Japan, CP cases have been reported annually, from the subtropical regions, including Okinawa Prefecture and Amami Islands, Kagoshima Prefecture. The principal toxins, named ciguatoxins (CTXs), are bio-synthesized by benthic dinoflagellate of genera Gambierdiscus and Fukuyoa. They are bio-transferred herbivorous animals to carnivorous fishes via the food chain.The Ogasawara Islands comprise more than 30 islands, Mukojima Islands, Chichijima (Bonin) Islands, Hahajima Islands, Iwo Islands, Nishinoshima, Minamitorishima, and Okinotorishima, which locate in the tropical to subtropical regions. The Mukojima Islands, Chichijima Islands, and Hahajima Islands locate approximately the same latitude as Okinawa. The distance from Tokyo is approximately 1,000 km for Chichijima, 1,700 km for Okinotorishima (the southernmost tip of Japan), and 1,900 km for Minamitorishima (the easternmost tip of Japan). These islands exist in a wide range of waters, latitudes from 20°25' to 27°44' North and longitudes from 136°04' to 153° 59' East. We collected 65 specimens of a grouper, Variola louti, the most frequent species implicated in CP in Japan, from the waters around the Chichijima, Mukojima, and Hahajima islands. The fish flesh specimens were analyzed CTXs using the liquid chromatography-tandem mass spectrometer (LC-MS/MS). While the peak whose retention time is almost identical to that of CTX1B was detected in all specimens on our routine protocol, no 52-epi-54-deoxyCTX1B nor 54-deoxyCTX1B was detected. The peak retention time was quite different from that of CTX1B when re-analyzing by changing the analytical column. Thus, the CTXs in the specimens in the waters of these islands seemed to be undetectable levels.


Assuntos
Bass , Ciguatera , Ciguatoxinas , Varíola , Animais , Cromatografia Líquida , Ciguatera/epidemiologia , Ciguatoxinas/análise , Peixes , Ilhas , Japão , Espectrometria de Massas em Tandem
14.
Mar Drugs ; 18(4)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244322

RESUMO

Ciguatera poisoning is linked to the ingestion of seafood that is contaminated with ciguatoxins (CTXs). The structural variability of these polyether toxins in nature remains poorly understood due to the low concentrations present even in highly toxic fish, which makes isolation and chemical characterization difficult. We studied the mass spectrometric fragmentation of Caribbean CTXs, i.e., the epimers C-CTX-1 and -2 (1 and 2), using a sensitive UHPLC-HRMS/MS approach in order to identify product ions of diagnostic value. We found that the fragmentation of the ladder-frame backbone follows a characteristic pattern and propose a generalized nomenclature for the ions formed. These data were applied to the structural characterization of a pair of so far poorly characterized isomers, C-CTX-3 and -4 (3 and 4), which we found to be reduced at C-56 relative to 1 and 2. Furthermore, we tested and applied reduction and oxidation reactions, monitored by LC-HRMS, in order to confirm the structures of 3 and 4. Reduction of 1 and 2 with NaBH4 afforded 3 and 4, thereby unambiguously confirming the identities of 3 and 4. In summary, this work provides a foundation for mass spectrometry-based characterization of new C-CTXs, including a suite of simple chemical reactions to assist the examination of structural modifications.


Assuntos
Ciguatera/prevenção & controle , Ciguatoxinas/isolamento & purificação , Peixes , Alimentos Marinhos/análise , Animais , Região do Caribe , Cromatografia Líquida de Alta Pressão/métodos , Ciguatoxinas/química , Conformação Molecular , Espectrometria de Massas em Tandem/métodos
15.
J Emerg Med ; 58(3): e109-e111, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31866166

RESUMO

BACKGROUND: Ciguatera poisoning is one of the most prevalent types of fish poisoning, but it is often underreported, leading many health practitioners to be unfamiliar in correctly identifying and treating this toxicity. CASE REPORT: We present a case of ciguatera toxicity encountered in an emergency department in a Midwest community hospital setting. A 56-year-old woman presented to the ED with symptoms of perioral numbness, generalized pruritis, and hot/cold temperature reversal. Through careful history taking it was determined that the patient had recently returned from vacationing in the Caribbean and had been consuming meals containing various types of fish. A clinical diagnosis of ciguatera toxicity was made, and the patient was treated supportively. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: This topic is important in the realm of emergency medicine because it presents a known toxicologic pathogen in an unsuspecting geographic location. This case highlights the importance of maintaining broad differentials and considering a patient's travel and exposure history to make the clinical diagnosis of ciguatoxin as well as the importance of preventative management to avoid recurrence of symptoms. We review the etiology of this fascinating toxin as well as the clinical implications in the diagnosis and management of this toxicity.


Assuntos
Ciguatera , Ciguatoxinas , Animais , Ciguatera/diagnóstico , Feminino , Humanos , Pessoa de Meia-Idade , Viagem
16.
J Phycol ; 55(3): 730-732, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30817008

RESUMO

The two most toxic Gambierdiscus species identified from the Caribbean are G. excentricus and G. silvae. These species are the primary causes of ciguatera fish poisoning and likely contribute disproportionately to the toxicity of marine food webs. While Gambierdiscus species are difficult to distinguish using light or scanning electron microscopy, reliable species-specific molecular identification methods have been developed and used successfully to identify a number of other Gambierdiscus species. Corresponding species-specific assays are not yet available for G. excentricus and G. silvae, which imposes limitations on species identification and related ecological studies. The following note describes species-specific polymerase chain reaction assays for G. excentricus and G. silvae that can be used for these purposes.


Assuntos
Ciguatera , Ciguatoxinas , Dinoflagellida , Animais , Região do Caribe , Filogenia , Reação em Cadeia da Polimerase
17.
Mar Drugs ; 16(1)2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29301247

RESUMO

Ciguatera Fish Poisoning (CFP) is a human illness caused by the consumption of marine fish contaminated with ciguatoxins (CTX) and possibly maitotoxins (MTX), produced by species from the benthic dinoflagellate genus Gambierdiscus. Here, we describe the identity and toxicology of Gambierdiscus spp. isolated from the tropical and temperate waters of eastern Australia. Based on newly cultured strains, we found that four Gambierdiscus species were present at the tropical location, including G. carpenteri, G. lapillus and two others which were not genetically identical to other currently described species within the genus, and may represent new species. Only G. carpenteri was identified from the temperate location. Using LC-MS/MS analysis we did not find any characterized microalgal CTXs (P-CTX-3B, P-CTX-3C, P-CTX-4A and P-CTX-4B) or MTX-1; however, putative maitotoxin-3 (MTX-3) was detected in all species except for the temperate population of G. carpenteri. Using the Ca2+ influx SH-SY5Y cell Fluorescent Imaging Plate Reader (FLIPR) bioassay we found CTX-like activity in extracts of the unidentified Gambierdiscus strains and trace level activity in strains of G. lapillus. While no detectable CTX-like activity was observed in tropical or temperate strains of G. carpenteri, all species showed strong maitotoxin-like activity. This study, which represents the most comprehensive analyses of the toxicology of Gambierdiscus strains isolated from Australia to date, suggests that CFP in this region may be caused by currently undescribed ciguatoxins and maitotoxins.


Assuntos
Ciguatoxinas/isolamento & purificação , Dinoflagellida/classificação , Toxinas Marinhas/isolamento & purificação , Oxocinas/isolamento & purificação , Animais , Austrália , Linhagem Celular Tumoral , Cromatografia Líquida/métodos , Ciguatera , Ciguatoxinas/toxicidade , Dinoflagellida/química , Humanos , Toxinas Marinhas/toxicidade , Oxocinas/toxicidade , Espectrometria de Massas em Tandem , Clima Tropical
18.
J Phycol ; 53(2): 283-297, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27885668

RESUMO

Gambierdiscus is a genus of benthic dinoflagellates found worldwide. Some species produce neurotoxins (maitotoxins and ciguatoxins) that bioaccumulate and cause ciguatera fish poisoning (CFP), a potentially fatal food-borne illness that is common worldwide in tropical regions. The investigation of toxigenic species of Gambierdiscus in CFP endemic regions in Australia is necessary as a first step to determine which species of Gambierdiscus are related to CFP cases occurring in this region. In this study, we characterized five strains of Gambierdiscus collected from Heron Island, Australia, a region in which ciguatera is endemic. Clonal cultures were assessed using (i) light microscopy; (ii) scanning electron microscopy; (iii) DNA sequencing based on the nuclear encoded ribosomal 18S and D8-D10 28S regions; (iv) toxicity via mouse bioassay; and (v) toxin profile as determined by Liquid Chromatography-Mass Spectrometry. Both the morphological and phylogenetic data indicated that these strains represent a new species of Gambierdiscus, G. lapillus sp. nov. (plate formula Po, 3', 0a, 7″, 6c, 7-8s, 5‴, 0p, 2″″ and distinctive by size and hatchet-shaped 2' plate). Culture extracts were found to be toxic using the mouse bioassay. Using chemical analysis, it was determined that they did not contain maitotoxin (MTX1) or known algal-derived ciguatoxin analogs (CTX3B, 3C, CTX4A, 4B), but that they contained putative MTX3, and likely other unknown compounds.


Assuntos
Dinoflagellida/classificação , Dinoflagellida/metabolismo , Animais , Austrália , Ciguatera , Ciguatoxinas/metabolismo , Dinoflagellida/genética , Toxinas Marinhas/metabolismo , Oxocinas/metabolismo , Filogenia , Análise de Sequência de DNA
19.
Mar Drugs ; 15(10)2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29023382

RESUMO

The absolute quantification of five toxins involved in ciguatera fish poisoning (CFP) in the Pacific was carried out by quantitative ¹H-NMR. The targeted toxins were ciguatoxin-1B (CTX1B), 52-epi-54-deoxyciguatoxin-1B (epideoxyCTX1B), ciguatoxin-3C (CTX3C), 51-hydroxyciguatoxin-3C (51OHCTX3C), and ciguatoxin-4A (CTX4A). We first calibrated the residual protons of pyridine-d5 using certified reference material, 1,4-BTMSB-d4, prepared the toxin solutions with the calibrated pyridin-d5, measured the ¹H-NMR spectra, and quantified the toxin using the calibrated residual protons as the internal standard. The absolute quantification was carried out by comparing the signal intensities between the selected protons of the target toxin and the residual protons of the calibrated pyridine-d5. The proton signals residing on the ciguatoxins (CTXs) to be used for quantification were carefully selected for those that were well separated from adjacent signals including impurities and that exhibited an effective intensity. To quantify CTX1B and its congeners, the olefin protons in the side chain were judged appropriate for use. The quantification was achievable with nano-molar solutions. The probable errors for uncertainty, calculated on respective toxins, ranged between 3% and 16%. The contamination of the precious toxins with nonvolatile internal standards was thus avoided. After the evaporation of pyridine-d5, the calibrated CTXs were ready for use as the reference standard in the quantitative analysis of ciguatoxins by LC/MS.


Assuntos
Ciguatera/etiologia , Ciguatoxinas/análise , Espectroscopia de Ressonância Magnética/métodos , Animais , Cromatografia Líquida/métodos , Ciguatoxinas/química , Oceano Pacífico , Prótons , Padrões de Referência , Espectrometria de Massas em Tandem/métodos
20.
Mar Drugs ; 15(7)2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28726749

RESUMO

Ciguatoxins (CTX) and brevetoxins (BTX) are polycyclic ethereal compounds biosynthesized by the worldwide distributed planktonic and epibenthic dinoflagellates of Gambierdiscus and Karenia genera, correspondingly. Ciguatera, evoked by CTXs, is a type of ichthyosarcotoxism, which involves a variety of gastrointestinal and neurological symptoms, while BTXs cause so-called neurotoxic shellfish poisoning. Both types of toxins are reviewed together because of similar mechanisms of their action. These are the only molecules known to activate voltage-sensitive Na⁺-channels in mammals through a specific interaction with site 5 of its α-subunit and may compete for it, which results in an increase in neuronal excitability, neurotransmitter release and impairment of synaptic vesicle recycling. Most marine ciguatoxins potentiate Nav channels, but a considerable number of them, such as gambierol and maitotoxin, have been shown to affect another ion channel. Although the extrinsic function of these toxins is probably associated with the function of a feeding deterrent, it was suggested that their intrinsic function is coupled with the regulation of photosynthesis via light-harvesting complex II and thioredoxin. Antagonistic effects of BTXs and brevenal may provide evidence of their participation as positive and negative regulators of this mechanism.


Assuntos
Ciguatera/metabolismo , Toxinas Marinhas/metabolismo , Oxocinas/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Ciguatoxinas/metabolismo , Dinoflagellida/metabolismo , Humanos , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA