Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39065304

RESUMO

Increasing demand for adult orthodontic treatment using clear aligners has highlighted challenges in bonding clear aligner attachments to various restorations. Specifically, the bond strength of clear aligner attachments to glazed monolithic zirconia has not been extensively studied. This study aims to compare the shear bond strength (SBS) and mode of failure (MOF) of conventional bonding methods versus Superbond C&B (4-META/MMA-TBB resin cement) for clear aligner attachments on glazed monolithic zirconia. Fifty sintered and glazed zirconia samples were divided into five groups and attached with clear aligner attachments: Si (silane), B (bonding agent), SiB (bonding agent and silane), SU (Superbond C&B), and SiSU (silane and Superbond C&B). SBS and MOF of these samples were analyzed. Results indicated a significant difference in bond strength among the groups. SiSU exhibited the highest bond strength, followed by SU, while B had the lowest bond strength. SEM analysis revealed that SiSU and SU predominantly exhibited mixed failure, indicating high bond strength without affecting the glazed layers of the zirconia. In contrast, B exhibited only adhesive failure at the interface, resulting in insufficient bond strength for effective orthodontic treatment. In conclusion, using 4-META/MMA-TBB resin cement provides high bond strength for clear aligner attachments on glazed zirconia with minimal material damage during debonding.

2.
Dent Mater J ; 42(2): 218-227, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36543192

RESUMO

The objective of this study was to develop a novel resin composite containing yttrium aluminum garnet (Y3Al5O12, YAG) nanoparticles for clear aligner attachments. After the silanization of YAG, their Fourier-transform infrared (FT-IR) and thermogravimetric (TGA) analyses were performed. By conducting flexural and compressive strength measurements, the optimal YAG concentration was selected for the subsequent experiments. Next, Vickers microhardness values, fluidities, attachment volumes, conversion degrees, and volumetric shrinkages of the resin were determined. The obtained FT-IR and TG results revealed that γ-methacryloxypropy ltrimethoxysilane coupling agent was successfully grafted onto the surface of YAG, which enabled their use as inorganic fillers. Furthermore, adding 9 wt% YAG in the resin can increase Vickers hardness and fluidity, reduce polymerization shrinkage, and enhance the restoration of the clear aligner attachment shape on the premise of guarantee proper flexural and compressive strength of the resin, which can help control tooth movement and increase orthodontic efficiency.


Assuntos
Metacrilatos , Aparelhos Ortodônticos Removíveis , Bis-Fenol A-Glicidil Metacrilato , Alumínio , Espectroscopia de Infravermelho com Transformada de Fourier , Ácidos Polimetacrílicos , Resinas Compostas , Ítrio , Teste de Materiais , Propriedades de Superfície
3.
Front Bioeng Biotechnol ; 11: 1346959, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38318418

RESUMO

Introduction: Clear aligners, while offering a more hygienic alternative to fixed appliances, are still associated with challenges including plaque accumulation and enamel demineralization. The aim of the present study was to investigate the antibiofilm and remineralization effectiveness of innovative flowable composite attachments containing bioceramic micro-fillers. Methods: Four experimental attachments were formulated and bonded to human enamel specimens: 3M Filtek Supreme flowable composite (Filtek SF) + 10% bioactive glass 45S5 (BAG), Filtek SF + 30% BAG, Filtek SF + 10% Bredigite (BRT), Filtek SF + 30% BRT. Plaque biofilms were grown on the bonded enamel using a standardized protocol and the biofilm-killing effect was assessed by confocal laser scanning microscopy and scanning electron microscopy. Vickers microhardness was measured to evaluate the remineralization effect of the attachments containing bioceramic fillers after acid challenge. Shear bond test was performed to assess the bonding strength. Results: Attachments with bioceramic fillers significantly inhibited plaque biofilm growth in 3 weeks on enamel, contributing over 20% bacterial cell killing in 10% filler groups and over 30% killing in 30% filler groups. All four experimental groups demonstrated significantly higher microhardness values than the control group without fillers on the attachment side. The shear bonding strength was not compromised in the attachments with micro-fillers. Discussion: Proper incorporation of bioceramic micro-fillers in attachments provides an innovative approach for clear aligner therapy with reinforced antibiofilm and remineralization effects without weakening shear bonding strength.

4.
J Mech Behav Biomed Mater ; 141: 105817, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37015147

RESUMO

OBJECTIVES: To develop an antibacterial and fluorescent clear aligner attachment resin via the incorporation of chlorhexidine loaded pore-expanded mesoporous silica nanoparticles (CHX@pMSN) and amino-silane functionalized zinc oxide quantum dots (aZnOQDs), and to evaluate its antibacterial activity, fluorescence capability, esthetic properties, mechanical performance and biocompatibility. METHODS: CHX@pMSN and aZnOQDs were incorporated into the commercial resin composites (Filtek Z350 XT, 3M) at different mass fractions, control group: Filtek; fluorescent attachment resin (FAR): Filtek + 3 wt% aZnOQDs; antibacterial and fluorescent attachment resin (AFAR)-1: Filtek + 3 wt% aZnOQDs + 1 wt% CHX@pMSN; AFAR-2: Filtek + 3 wt% aZnOQDs + 3 wt% CHX@pMSN; AFAR-3: Filtek + 3 wt% aZnOQDs + 5 wt% CHX@pMSN. CHX release, antibacterial activity, fluorescence capability, color change, stain resistance, degree of conversion, depth of cure, polymerization shrinkage, water sorption and solubility, softening in solvent, flexural strength, flexural modulus, shear bond strength, and cytotoxicity were evaluated comprehensively. RESULTS: CHX could be continuously released from the AFAR groups for up to 30 days. CFU, MTT, lactic acid production, SEM and CLSM evaluation showed AFAR-2 and AFAR-3 could effectively inhibit S. mutans biofilms even after 1-month aging. Only AFAR-3 showed clinically perceptible color change and all the experimental groups were not more susceptible to staining. AFAR-1 and AFAR-2 could suppress polymerization shrinkage and enhance the resistance to degradation without compromising other properties, including degree of conversion, water sorption and solubility, flexural strength, flexural modulus, and shear bond strength. Depth of cure of all the four experimental groups was significantly decreased (p < 0.05) but still within the ISO standard. CCK-8 assay and live/dead cell staining denied the cytotoxicity of experimental resins. Fluorescence intensity tests showed that FAR and AFAR-2 could emit strong yellowish fluorescence under the excitation of ultraviolet for up to six months. CONCLUSIONS: AFRA-2 possessed long-term antibiofilm activity, strong fluorescence capability and satisfying biocompatibility without compromising esthetic and mechanical properties. This study proposed a new strategy for reducing bacteria accumulation around the attachment, which is also promising in helping orthodontists to remove the attachment thoroughly and precisely.


Assuntos
Nanopartículas , Aparelhos Ortodônticos Removíveis , Pontos Quânticos , Óxido de Zinco , Clorexidina/farmacologia , Clorexidina/química , Dióxido de Silício/química , Teste de Materiais , Resinas Compostas/química , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/química , Água , Metacrilatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA