Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 171(4): 934-949.e16, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29033130

RESUMO

The mechanisms by which immune checkpoint blockade modulates tumor evolution during therapy are unclear. We assessed genomic changes in tumors from 68 patients with advanced melanoma, who progressed on ipilimumab or were ipilimumab-naive, before and after nivolumab initiation (CA209-038 study). Tumors were analyzed by whole-exome, transcriptome, and/or T cell receptor (TCR) sequencing. In responding patients, mutation and neoantigen load were reduced from baseline, and analysis of intratumoral heterogeneity during therapy demonstrated differential clonal evolution within tumors and putative selection against neoantigenic mutations on-therapy. Transcriptome analyses before and during nivolumab therapy revealed increases in distinct immune cell subsets, activation of specific transcriptional networks, and upregulation of immune checkpoint genes that were more pronounced in patients with response. Temporal changes in intratumoral TCR repertoire revealed expansion of T cell clones in the setting of neoantigen loss. Comprehensive genomic profiling data in this study provide insight into nivolumab's mechanism of action.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Imunoterapia , Melanoma/terapia , Microambiente Tumoral , Estudo de Associação Genômica Ampla , Humanos , Melanoma/genética , Melanoma/imunologia , Nivolumabe , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T , Transcriptoma
2.
Immunity ; 54(6): 1245-1256.e5, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34004140

RESUMO

We examined how baseline CD4+ T cell repertoire and precursor states impact responses to pathogen infection in humans using primary immunization with yellow fever virus (YFV) vaccine. YFV-specific T cells in unexposed individuals were identified by peptide-MHC tetramer staining and tracked pre- and post-vaccination by tetramers and TCR sequencing. A substantial number of YFV-reactive T cells expressed memory phenotype markers and contained expanded clones in the absence of exposure to YFV. After vaccination, pre-existing YFV-specific T cell populations with low clonal diversity underwent limited expansion, but rare populations with a reservoir of unexpanded TCRs generated robust responses. These altered dynamics reorganized the immunodominance hierarchy and resulted in an overall increase in higher avidity T cells. Thus, instead of further increasing the representation of dominant clones, YFV vaccination recruits rare and more responsive T cells. Our findings illustrate the impact of vaccines in prioritizing T cell responses and reveal repertoire reorganization as a key component of effective vaccination.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Vacina contra Febre Amarela/imunologia , Febre Amarela/imunologia , Vírus da Febre Amarela/imunologia , Adulto , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Células Cultivadas , Chlorocebus aethiops , Humanos , Receptores de Antígenos de Linfócitos T/imunologia , Vacinação/métodos , Células Vero , Febre Amarela/virologia
3.
Immunity ; 48(1): 174-184.e9, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29343437

RESUMO

Human B cell antigen-receptor (BCR) repertoires reflect repeated exposures to evolving influenza viruses; new exposures update the previously generated B cell memory (Bmem) population. Despite structural similarity of hemagglutinins (HAs) from the two groups of influenza A viruses, cross-reacting antibodies (Abs) are uncommon. We analyzed Bmem compartments in three unrelated, adult donors and found frequent cross-group BCRs, both HA-head directed and non-head directed. Members of a clonal lineage from one donor had a BCR structure similar to that of a previously described Ab, encoded by different gene segments. Comparison showed that both Abs contacted the HA receptor-binding site through long heavy-chain third complementarity determining regions. Affinities of the clonal-lineage BCRs for historical influenza-virus HAs from both group 1 and group 2 viruses suggested that serial responses to seasonal influenza exposures had elicited the lineage and driven affinity maturation. We propose that appropriate immunization regimens might elicit a comparably broad response.


Assuntos
Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Vírus da Influenza A/imunologia , Adulto , Técnicas de Cultura de Células , Reações Cruzadas/imunologia , Feminino , Citometria de Fluxo , Hemaglutininas Virais/imunologia , Humanos , Interferometria , Masculino
4.
Trends Genet ; 39(5): 358-380, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36842901

RESUMO

Clonal selection and drift drive both normal tissue and cancer development. However, the biological mechanisms and environmental conditions underpinning these processes remain to be elucidated. Clonal selection models are centered in Darwinian evolutionary theory, where some clones with the fittest features are selected and populate the tissue or tumor. We suggest that different subclasses of stem cells, each of which is responsible for a distinct feature of the selection process, share common features between normal and cancer conditions. While active stem cells populate the tissue, dormant cells account for tissue replenishment/regeneration in both normal and cancerous tissues. We also discuss potential mechanisms that drive clonal drift, their interactions with clonal selection, and their similarities during normal and cancer tissue development.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/patologia , Células-Tronco , Evolução Biológica , Células Clonais/patologia
5.
EMBO J ; 40(17): e107271, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34368984

RESUMO

Tumors are complex cellular and acellular environments within which cancer clones are under continuous selection pressures. Cancer cells are in a permanent mode of interaction and competition with each other as well as with the immediate microenvironment. In the course of these competitive interactions, cells share information regarding their general state of fitness, with less-fit cells being typically eliminated via apoptosis at the hands of those cells with greater cellular fitness. Competitive interactions involving exchange of cell fitness information have implications for tumor growth, metastasis, and therapy outcomes. Recent research has highlighted sophisticated pathways such as Flower, Hippo, Myc, and p53 signaling, which are employed by cancer cells and the surrounding microenvironment cells to achieve their evolutionary goals by means of cell competition mechanisms. In this review, we discuss these recent findings and explain their importance and role in evolution, growth, and treatment of cancer. We further consider potential physiological conditions, such as hypoxia and chemotherapy, that can function as selective pressures under which cell competition mechanisms may evolve differently or synergistically to confer oncogenic advantages to cancer.


Assuntos
Competição entre as Células , Neoplasias/metabolismo , Microambiente Tumoral , Animais , Humanos , Neoplasias/patologia , Transdução de Sinais
6.
Immunity ; 44(3): 542-552, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26948373

RESUMO

Germinal center (GC) B cells evolve toward increased affinity by a Darwinian process that has been studied primarily in genetically restricted, hapten-specific responses. We explored the population dynamics of genetically diverse GC responses to two complex antigens-Bacillus anthracis protective antigen and influenza hemagglutinin-in which B cells competed both intra- and interclonally for distinct epitopes. Preferred VH rearrangements among antigen-binding, naive B cells were similarly abundant in early GCs but, unlike responses to haptens, clonal diversity increased in GC B cells as early "winners" were replaced by rarer, high-affinity clones. Despite affinity maturation, inter- and intraclonal avidities varied greatly, and half of GC B cells did not bind the immunogen but nonetheless exhibited biased VH use, V(D)J mutation, and clonal expansion comparable to antigen-binding cells. GC reactions to complex antigens permit a range of specificities and affinities, with potential advantages for broad protection.


Assuntos
Linfócitos B/fisiologia , Seleção Clonal Mediada por Antígeno , Centro Germinativo/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Animais , Afinidade de Anticorpos/genética , Diversidade de Anticorpos , Antígenos de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Células Cultivadas , Feminino , Hemaglutininas Virais/imunologia , Humanos , Imunidade Humoral , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Orthomyxoviridae/metabolismo , Receptores de Antígenos de Linfócitos B/genética , Anticorpos de Domínio Único/genética
7.
Immunol Cell Biol ; 102(6): 474-486, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38659280

RESUMO

T cells express a T-cell receptor (TCR) heterodimer that is the product of germline rearrangement and junctional editing resulting in immense clonotypic diversity. The generation of diverse TCR repertoires enables the recognition of pathogen-derived peptide antigens presented by polymorphic major histocompatibility complex (MHC) molecules. However, T cells also recognize nonpeptide antigens through nearly monomorphic antigen-presenting systems, such as cluster of differentiation 1 (CD1), MHC-related protein 1 (MR1) and butyrophilins (BTNs). This potential for shared immune responses across genetically diverse populations led to their designation as donor-unrestricted T cells (DURTs). As might be expected, some CD1-, MR1- and BTN-restricted T cells express a TCR that is conserved across unrelated individuals. However, several recent studies have reported unexpected diversity among DURT TCRs, and increasing evidence suggests that this diversity has functional consequences. Recent reports also challenge the dogma that immune cells are either innate or adaptive and suggest that DURT TCRs may act in both capacities. Here, we review this evidence and propose an expanded view of the role for clonotypic diversity among DURTs in humans, including new perspectives on how DURT TCRs may integrate their adaptive and innate immune functions.


Assuntos
Receptores de Antígenos de Linfócitos T , Linfócitos T , Humanos , Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Células Clonais , Variação Genética , Animais , Doadores de Tecidos
8.
J Transl Med ; 22(1): 69, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38243238

RESUMO

BACKGROUND: The cancer-immunity cycle (CI cycle) provides a theoretical framework to illustrate the process of the anticancer immune response. Recently, the update of the CI cycle theory emphasizes the importance of tumor's immunological phenotype. However, there is lack of immunological phenotype of pan-cancer based on CI cycle theory. METHODS: Here, we applied a visualizing method termed 'cancer immunogram' to visualize the state of CI cycle of 8460 solid tumors from TCGA cohort. Unsupervised clustering of the cancer immunogram was performed using the nonnegative matrix factorization (NMF) analysis. We applied an evolutionary genomics approach (dN/dS ratio) to evaluate the clonal selection patterns of tumors with distinct immunogram subtypes. RESULTS: We defined four major CI cycle patterns across 32 cancer types using a cancer immunogram approach. Immunogram-I was characterized by 'hot' and 'exhausted' features, indicating a favorable prognosis. Strikingly, immunogram-II, immunogram-III, and immunogram-IV represented distinct immunosuppressive patterns of 'cold' tumor. Immunogram-II was characterized by 'cold' and 'radical' features, which represented increased expression of immune inhibitor molecules and high levels of positive selection, indicating the worst prognosis. Immunogram-III was characterized by 'cold' and 'recognizable' features and upregulated expression of MHC I molecules. Immunogram-IV was characterized by 'cold' and 'inert' features, which represented overall immunosuppression, lower levels of immunoediting and positive selection, and accumulation of more tumor neoantigens. In particular, favorable overall survival was observed in metastatic urothelial cancer patients with immunogram-I and immunogram-IV after immune checkpoint inhibitor (ICI) therapy. Meanwhile, a higher response rate to ICI therapy was observed in metastatic gastric cancer patients with immunogram-I phenotype. CONCLUSIONS: Our findings provide new insight into the interaction between immunity and cancer evolution, which may contribute to optimizing immunotherapy strategies.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Imunoterapia/métodos , Fenótipo , Prognóstico , Microambiente Tumoral
9.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33452133

RESUMO

The harsh microenvironment of ductal carcinoma in situ (DCIS) exerts strong evolutionary selection pressures on cancer cells. We hypothesize that the poor metabolic conditions near the ductal center foment the emergence of a Warburg Effect (WE) phenotype, wherein cells rapidly ferment glucose to lactic acid, even in normoxia. To test this hypothesis, we subjected low-glycolytic breast cancer cells to different microenvironmental selection pressures using combinations of hypoxia, acidosis, low glucose, and starvation for many months and isolated single clones for metabolic and transcriptomic profiling. The two harshest conditions selected for constitutively expressed WE phenotypes. RNA sequencing analysis of WE clones identified the transcription factor KLF4 as potential inducer of the WE phenotype. In stained DCIS samples, KLF4 expression was enriched in the area with the harshest microenvironmental conditions. We simulated in vivo DCIS phenotypic evolution using a mathematical model calibrated from the in vitro results. The WE phenotype emerged in the poor metabolic conditions near the necrotic core. We propose that harsh microenvironments within DCIS select for a WE phenotype through constitutive transcriptional reprogramming, thus conferring a survival advantage and facilitating further growth and invasion.


Assuntos
Neoplasias da Mama/genética , Carcinoma Intraductal não Infiltrante/genética , Fatores de Transcrição Kruppel-Like/genética , Efeito Warburg em Oncologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/metabolismo , Carcinoma Intraductal não Infiltrante/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Glicólise/genética , Humanos , Fator 4 Semelhante a Kruppel , Células MCF-7 , Estadiamento de Neoplasias , Hipóxia Tumoral/genética , Microambiente Tumoral/genética
10.
BMC Biol ; 21(1): 98, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37106386

RESUMO

BACKGROUND: Tumors are complex tissues containing collections of phenotypically diverse malignant and nonmalignant cells. We know little of the mechanisms that govern heterogeneity of tumor cells nor of the role heterogeneity plays in overcoming stresses, such as adaptation to different microenvironments. Osteosarcoma is an ideal model for studying these mechanisms-it exhibits widespread inter- and intra-tumoral heterogeneity, predictable patterns of metastasis, and a lack of clear targetable driver mutations. Understanding the processes that facilitate adaptation to primary and metastatic microenvironments could inform the development of therapeutic targeting strategies. RESULTS: We investigated single-cell RNA-sequencing profiles of 47,977 cells obtained from cell line and patient-derived xenograft models as cells adapted to growth within primary bone and metastatic lung environments. Tumor cells maintained phenotypic heterogeneity as they responded to the selective pressures imposed during bone and lung colonization. Heterogenous subsets of cells defined by distinct transcriptional profiles were maintained within bone- and lung-colonizing tumors, despite high-level selection. One prominent heterogenous feature involving glucose metabolism was clearly validated using immunofluorescence staining. Finally, using concurrent lineage tracing and single-cell transcriptomics, we found that lung colonization enriches for multiple clones with distinct transcriptional profiles that are preserved across cellular generations. CONCLUSIONS: Response to environmental stressors occurs through complex and dynamic phenotypic adaptations. Heterogeneity is maintained, even in conditions that enforce clonal selection. These findings likely reflect the influences of developmental processes promoting diversification of tumor cell subpopulations, which are retained, even in the face of selective pressures.


Assuntos
Neoplasias Ósseas , Neoplasias Pulmonares , Osteossarcoma , Humanos , Osteossarcoma/genética , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Perfilação da Expressão Gênica , Neoplasias Ósseas/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Microambiente Tumoral/genética
11.
Immunol Cell Biol ; 101(8): 678-683, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37610184

RESUMO

Between 1969 and 1983 the lab of Kevin Lafferty in Canberra developed the concept of the T-cell "costimulator," an essential second signal for activation. A great deal of the work appeared in this journal before it was known as Immunology & Cell Biology (ICB). As part of the 100-year anniversary of the journal, I offer a personal reflection on Kevin's legacy and impact.

12.
Curr Oncol Rep ; 25(3): 211-220, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36719597

RESUMO

PURPOSE OF REVIEW: Clonal hematopoiesis (CH) is an age-dependent process detectable using advanced sequencing technologies and is associated with multiple adverse health outcomes including cardiovascular disease and cancer. The purpose of this review is to summarize known causes of CH mutations and to identify key areas and considerations for future research on CH. RECENT FINDINGS: Studies have identified multiple potential causes of CH mutations including smoking, cancer therapies, cardiometabolic disease, inflammation, and germline risk factors. Additionally, large-scale studies have facilitated the identification of gene-specific effects of CH mutation risk factors that may have unique downstream health implications. For example, cancer therapies and sources of environmental radiation appear to cause CH through their impact on DNA damage repair genes. There is a growing body of evidence defining risk factors for CH mutations. Standardization in the identification of CH mutations may have important implications for future research. Additional studies in underrepresented populations and their diverse environmental exposures are needed to facilitate broad public health impact of the study of CH mutations.


Assuntos
Hematopoiese Clonal , Neoplasias , Humanos , Hematopoese/genética , Mutação , Fatores de Risco
13.
Proc Natl Acad Sci U S A ; 117(36): 22341-22350, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32855302

RESUMO

Conformational diversity and self-cross-reactivity of antigens have been correlated with evasion from neutralizing antibody responses. We utilized single cell B cell sequencing, biolayer interferometry and X-ray crystallography to trace mutation selection pathways where the antibody response must resolve cross-reactivity between foreign and self-proteins bearing near-identical contact surfaces, but differing in conformational flexibility. Recurring antibody mutation trajectories mediate long-range rearrangements of framework (FW) and complementarity determining regions (CDRs) that increase binding site conformational diversity. These antibody mutations decrease affinity for self-antigen 19-fold and increase foreign affinity 67-fold, to yield a more than 1,250-fold increase in binding discrimination. These results demonstrate how conformational diversity in antigen and antibody does not act as a barrier, as previously suggested, but rather facilitates high affinity and high discrimination between foreign and self.


Assuntos
Anticorpos , Diversidade de Anticorpos/genética , Autoantígenos , Rearranjo Gênico do Linfócito B/genética , Mutação/genética , Animais , Anticorpos/química , Anticorpos/genética , Anticorpos/metabolismo , Afinidade de Anticorpos/genética , Autoanticorpos/química , Autoanticorpos/genética , Autoanticorpos/metabolismo , Autoantígenos/química , Autoantígenos/metabolismo , Regiões Determinantes de Complementaridade/genética , Imunidade Humoral/genética , Camundongos , Modelos Moleculares , Conformação Proteica , Hipermutação Somática de Imunoglobulina/genética
14.
Hist Philos Life Sci ; 45(1): 8, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36862350

RESUMO

Originating in the work of Ernst Haeckel and Wilhelm Preyer, and advanced by a Prussian embryologist, Wilhelm Roux, the idea of struggle for existence between body parts helped to establish a framework, in which population cell dynamics rather than a predefined harmony guides adaptive changes in an organism. Intended to provide a causal-mechanical view of functional adjustments in body parts, this framework was also embraced later by early pioneers of immunology to address the question of vaccine effectiveness and pathogen resistance. As an extension of these early efforts, Elie Metchnikoff established an evolutionary vision of immunity, development, pathology, and senescence, in which phagocyte-driven selection and struggle promote adaptive changes in an organism. Despite its promising start, the idea of somatic evolution lost its appeal at the turn of the twentieth century giving way to a vision, in which an organism operates as a genetically uniform, harmonious entity.

15.
Immunol Rev ; 285(1): 249-262, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30129201

RESUMO

Problem-solving strategies in immunology currently utilize a series of ad hoc, qualitative variations on a foundation of Burnet's formulation of clonal selection theory. These modifications, including versions of two-signal theory, describe how signals regulate lymphocytes to make important decisions governing self-tolerance and changes to their effector and memory states. These theories are useful but are proving inadequate to explain the observable genesis and control of heterogeneity in cell types, the nonlinear passage of cell fate trajectories and how the input from multiple environmental signals can be integrated at different times and strengths. Here, I argue for a paradigm change to place immune theory on a firmer philosophical and quantitative foundation to resolve these difficulties. This change rejects the notion of identical cell subsets and substitutes the concept of a cell as comprised of autonomous functional mechanical components subject to stochastic variations in construction and operation. The theory aims to explain immunity in terms of cell population dynamics, dictated by the operation of cell machinery, such as randomizing elements, division counters, and fate timers. The effect of communicating signals alone and in combination within this system is determined with a cellular calculus. A series of models developed with these principles can resolve logical cell fate and signaling paradoxes and offer a reinterpretation for how self-non-self discrimination and immune response class are controlled.


Assuntos
Seleção Clonal Mediada por Antígeno , Tolerância Imunológica , Imunidade , Linfócitos T/fisiologia , Animais , Autoantígenos/imunologia , Humanos , Comunicação Parácrina , Teoria da Probabilidade , Receptor Cross-Talk , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais
16.
J Biol Chem ; 294(24): 9377-9389, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-30952700

RESUMO

Cancer tissues harbor thousands of mutations, and a given oncogene may be mutated at hundreds of sites, yet only a few of these mutations have been functionally tested. Here, we describe an unbiased platform for the functional characterization of thousands of variants of a single receptor tyrosine kinase (RTK) gene in a single assay. Our in vitroscreen for activating mutations (iSCREAM) platform enabled rapid analysis of mutations conferring gain-of-function RTK activity promoting clonal growth. The screening strategy included a somatic model of cancer evolution and utilized a library of 7,216 randomly mutated epidermal growth factor receptor (EGFR) single-nucleotide variants that were tested in murine lymphoid Ba/F3 cells. These cells depend on exogenous interleukin-3 (IL-3) for growth, but this dependence can be compensated by ectopic EGFR overexpression, enabling selection for gain-of-function EGFR mutants. Analysis of the enriched mutants revealed EGFR A702V, a novel activating variant that structurally stabilized the EGFR kinase dimer interface and conferred sensitivity to kinase inhibition by afatinib. As proof of concept for our approach, we recapitulated clinical observations and identified the EGFR L858R as the major enriched EGFR variant. Altogether, iSCREAM enabled robust enrichment of 21 variants from a total of 7,216 EGFR mutations. These findings indicate the power of this screening platform for unbiased identification of activating RTK variants that are enriched under selection pressure in a model of cancer heterogeneity and evolution.


Assuntos
Proliferação de Células/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Animais , Células Cultivadas , Receptores ErbB/genética , Receptores ErbB/metabolismo , Biblioteca Gênica , Humanos , Técnicas In Vitro , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Fosforilação
17.
Eur J Haematol ; 104(5): 488-498, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31990086

RESUMO

INTRODUCTION: Therapy-related myelodysplastic syndrome and acute myeloid leukemia (t-MDS/AML) are defined as complications of previous cytotoxic therapy. Azacitidine (AZA), a hypomethylating agent, has showed activity in t-MDS/AML. OBJECTIVES: We evaluated the clonal dynamics of AZA-treated t-MDS/AML. METHODS: We collected bone marrow samples, at diagnosis and during treatment, from AZA-treated t-MDS/AML patients. NGS on 19 myeloid genes was performed, and candidate mutations with a variant allele frequency >5% were selected. RESULTS: Seven t-AML and 12 t-MDS were included with median age of 71 (56-82) years old, median number of AZA cycles of 6 (1-15), and median overall survival (OS) of 14 (3-29) months. We observed correlation between AZA response and clonal selection. Decrease of TP53-mutated clone was correlated with response to AZA, confirming AZA efficacy in this subgroup. In some patients, emergence of mutations was correlated with progression or relapse without impact on OS. Clones with mutations in genes for DNA methylation regulation frequently occurred with other mutations and remained stable during AZA treatment, independent of AZA response. CONCLUSION: We confirmed that the molecular complexity of t-MNs and that the follow-up of clonal selection during AZA treatment could be useful to define treatment combination.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Azacitidina/uso terapêutico , Evolução Clonal/efeitos dos fármacos , Evolução Clonal/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Idoso , Idoso de 80 Anos ou mais , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/efeitos adversos , Azacitidina/administração & dosagem , Azacitidina/efeitos adversos , Biomarcadores Tumorais , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucemia Mieloide Aguda/diagnóstico , Masculino , Mutação , Síndromes Mielodisplásicas/diagnóstico , Resultado do Tratamento
18.
Oecologia ; 193(1): 135-142, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32307672

RESUMO

Populations of generalist grazers often contain genotypes with "powerful" and "efficient" strategies. Powerful genotypes grow rapidly on rich-quality resources, but slowly on poorer-quality ones, while efficient genotypes grow relatively better on poorer resources but cannot exploit richer resources as well. Via a "power-efficiency" trade-off, variation in resource quality could maintain genetic diversity. To evaluate this mechanism, we sampled six populations of the freshwater cladoceran Daphnia pulicaria. In persisting (year-round) populations, Daphnia consume resources that vary in quality, whereas in non-persisting (spring-only) populations, Daphnia primarily encounter rich-quality resources. We hypothesized that non-persisting populations harbor no efficient clones (hence should show lower growth on poor-quality resources). Although individuals from non-persisting populations remained smaller than individuals from persisting populations, no evidence arose for a trade-off between powerful and efficient strategies. In fact, growth rates on the two diets were positively correlated (instead of negatively, as predicted). Furthermore, in the persisting populations, we predicted that clonal selection from spring to summer should shift the distribution of genotypes from powerful (specialists on richer spring resources) to efficient (poorer, summer resources). Genetic composition of populations shifted from spring to summer, but not toward more efficient genotypes. Therefore, in these lakes, maintenance of variation among genotypes must stem from more complicated factors than population persistence patterns or seasonal shifts in resource quality alone.


Assuntos
Daphnia , Lagos , Animais , Variação Genética , Genótipo
19.
Entropy (Basel) ; 22(6)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-33286368

RESUMO

Amazon.com Inc. seeks alternative ways to improve manual transactions system of granting employees resources access in the field of data science. The work constructs a modified Artificial Neural Network (ANN) by incorporating a Discrete Hopfield Neural Network (DHNN) and Clonal Selection Algorithm (CSA) with 3-Satisfiability (3-SAT) logic to initiate an Artificial Intelligence (AI) model that executes optimization tasks for industrial data. The selection of 3-SAT logic is vital in data mining to represent entries of Amazon Employees Resources Access (AERA) via information theory. The proposed model employs CSA to improve the learning phase of DHNN by capitalizing features of CSA such as hypermutation and cloning process. This resulting the formation of the proposed model, as an alternative machine learning model to identify factors that should be prioritized in the approval of employees resources applications. Subsequently, reverse analysis method (SATRA) is integrated into our proposed model to extract the relationship of AERA entries based on logical representation. The study will be presented by implementing simulated, benchmark and AERA data sets with multiple performance evaluation metrics. Based on the findings, the proposed model outperformed the other existing methods in AERA data extraction.

20.
Genetica ; 147(1): 91-101, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30783944

RESUMO

Cultivated grapevine (Vitis vinifera L. ssp. sativa D.C.) is one of the oldest agricultural crops, each variety comprising an array of clones obtained by vegetative propagation from a selected vine grown from a single seedling. Most clones within a variety are identical, but some show a different form of accession, giving rise to new divergent phenotypes. Understanding the associations among the genotypes within a variety is crucial to efficient management and effective grapevine improvement. Inter-primer binding-site (iPBS) markers may aid in determining the new clones inside closely related genotypes. Following this idea, iPBS markers were used to assess the genetic variation of 33 grapevine genotypes collected from Russia. We used molecular markers to identify the differences among and within five grapevine clonal populations and analysed the variation, using clustering and statistical approaches. Four of a total of 30 PBS primers were selected, based on amplification efficiency. Polymerase chain reaction (PCR) with PBS primers resulted in a total of 1412 bands ranging from 300 to 6000 bp, with a polymorphism ratio of 44%, ranging from 58 to 75 bands per group. In total, were identified seven private bands in 33 genotypes. Results of molecular variance analysis showed that 40% of the total variation was observed within groups and only 60% between groups. Cluster analysis clearly showed that grapevine genotypes are highly divergent and possess abundant genetic diversities. The iPBS PCR-based genome fingerprinting technology used in this study effectively differentiated genotypes into five grapevine groups and indicated that iPBS markers are useful tools for clonal selection. The number of differences between clones was sufficient to identify them as separate clones of studied varieties containing unique mutations. Our previous phenotypic and phenological studies have confirmed that these genotypes differ from those of maternal plants. This work emphasized the need for a better understanding of the genotypic differences among closely related varieties of grapevine and has implications for the management of its selection processes.


Assuntos
Genótipo , Filogenia , Polimorfismo Genético , Vitis/genética , Especiação Genética , Sequências Repetitivas de Ácido Nucleico , Seleção Genética , Vitis/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA