Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.400
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(20): 3807-3822.e12, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36179671

RESUMO

Fungal microorganisms (mycobiota) comprise a small but immunoreactive component of the human microbiome, yet little is known about their role in human cancers. Pan-cancer analysis of multiple body sites revealed tumor-associated mycobiomes at up to 1 fungal cell per 104 tumor cells. In lung cancer, Blastomyces was associated with tumor tissues. In stomach cancers, high rates of Candida were linked to the expression of pro-inflammatory immune pathways, while in colon cancers Candida was predictive of metastatic disease and attenuated cellular adhesions. Across multiple GI sites, several Candida species were enriched in tumor samples and tumor-associated Candida DNA was predictive of decreased survival. The presence of Candida in human GI tumors was confirmed by external ITS sequencing of tumor samples and by culture-dependent analysis in an independent cohort. These data implicate the mycobiota in the pathogenesis of GI cancers and suggest that tumor-associated fungal DNA may serve as diagnostic or prognostic biomarkers.


Assuntos
Neoplasias Pulmonares , Micobioma , Biomarcadores , Candida/genética , DNA Fúngico , Fungos/genética , Humanos
2.
Cell ; 182(6): 1474-1489.e23, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32841603

RESUMO

Widespread changes to DNA methylation and chromatin are well documented in cancer, but the fate of higher-order chromosomal structure remains obscure. Here we integrated topological maps for colon tumors and normal colons with epigenetic, transcriptional, and imaging data to characterize alterations to chromatin loops, topologically associated domains, and large-scale compartments. We found that spatial partitioning of the open and closed genome compartments is profoundly compromised in tumors. This reorganization is accompanied by compartment-specific hypomethylation and chromatin changes. Additionally, we identify a compartment at the interface between the canonical A and B compartments that is reorganized in tumors. Remarkably, similar shifts were evident in non-malignant cells that have accumulated excess divisions. Our analyses suggest that these topological changes repress stemness and invasion programs while inducing anti-tumor immunity genes and may therefore restrain malignant progression. Our findings call into question the conventional view that tumor-associated epigenomic alterations are primarily oncogenic.


Assuntos
Cromatina/metabolismo , Cromossomos/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica/genética , Divisão Celular , Senescência Celular/genética , Sequenciamento de Cromatina por Imunoprecipitação , Cromossomos/genética , Estudos de Coortes , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Biologia Computacional , Metilação de DNA/genética , Epigenômica , Células HCT116 , Humanos , Hibridização in Situ Fluorescente , Microscopia Eletrônica de Transmissão , Simulação de Dinâmica Molecular , RNA-Seq , Análise Espacial , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
3.
Cell ; 176(6): 1325-1339.e22, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30827679

RESUMO

Lineage tracing provides key insights into the fate of individual cells in complex organisms. Although effective genetic labeling approaches are available in model systems, in humans, most approaches require detection of nuclear somatic mutations, which have high error rates, limited scale, and do not capture cell state information. Here, we show that somatic mutations in mtDNA can be tracked by single-cell RNA or assay for transposase accessible chromatin (ATAC) sequencing. We leverage somatic mtDNA mutations as natural genetic barcodes and demonstrate their utility as highly accurate clonal markers to infer cellular relationships. We track native human cells both in vitro and in vivo and relate clonal dynamics to gene expression and chromatin accessibility. Our approach should allow clonal tracking at a 1,000-fold greater scale than with nuclear genome sequencing, with simultaneous information on cell state, opening the way to chart cellular dynamics in human health and disease.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Sequência de Bases , Linhagem da Célula , Cromatina , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Genômica/métodos , Células HEK293 , Células-Tronco Hematopoéticas/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação , Análise de Célula Única , Transposases
4.
Cell ; 176(5): 1098-1112.e18, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30794774

RESUMO

Increased levels of intestinal bile acids (BAs) are a risk factor for colorectal cancer (CRC). Here, we show that the convergence of dietary factors (high-fat diet) and dysregulated WNT signaling (APC mutation) alters BA profiles to drive malignant transformations in Lgr5-expressing (Lgr5+) cancer stem cells and promote an adenoma-to-adenocarcinoma progression. Mechanistically, we show that BAs that antagonize intestinal farnesoid X receptor (FXR) function, including tauro-ß-muricholic acid (T-ßMCA) and deoxycholic acid (DCA), induce proliferation and DNA damage in Lgr5+ cells. Conversely, selective activation of intestinal FXR can restrict abnormal Lgr5+ cell growth and curtail CRC progression. This unexpected role for FXR in coordinating intestinal self-renewal with BA levels implicates FXR as a potential therapeutic target for CRC.


Assuntos
Neoplasias Intestinais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Linhagem Celular , Proliferação de Células/genética , Neoplasias Colorretais/metabolismo , Ácido Desoxicólico/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Intestinais/genética , Intestinos , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas/fisiologia , Organoides/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Fatores de Risco , Transdução de Sinais , Ácido Taurocólico/análogos & derivados , Ácido Taurocólico/metabolismo , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia
5.
Cell ; 177(4): 1035-1049.e19, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31031003

RESUMO

We performed the first proteogenomic study on a prospectively collected colon cancer cohort. Comparative proteomic and phosphoproteomic analysis of paired tumor and normal adjacent tissues produced a catalog of colon cancer-associated proteins and phosphosites, including known and putative new biomarkers, drug targets, and cancer/testis antigens. Proteogenomic integration not only prioritized genomically inferred targets, such as copy-number drivers and mutation-derived neoantigens, but also yielded novel findings. Phosphoproteomics data associated Rb phosphorylation with increased proliferation and decreased apoptosis in colon cancer, which explains why this classical tumor suppressor is amplified in colon tumors and suggests a rationale for targeting Rb phosphorylation in colon cancer. Proteomics identified an association between decreased CD8 T cell infiltration and increased glycolysis in microsatellite instability-high (MSI-H) tumors, suggesting glycolysis as a potential target to overcome the resistance of MSI-H tumors to immune checkpoint blockade. Proteogenomics presents new avenues for biological discoveries and therapeutic development.


Assuntos
Neoplasias do Colo/genética , Neoplasias do Colo/terapia , Proteogenômica/métodos , Apoptose/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linfócitos T CD8-Positivos , Proliferação de Células/genética , Neoplasias do Colo/metabolismo , Genômica/métodos , Glicólise , Humanos , Instabilidade de Microssatélites , Mutação , Fosforilação , Estudos Prospectivos , Proteômica/métodos , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo
6.
Cell ; 174(1): 88-101.e16, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29909986

RESUMO

In colorectal cancer patients, a high density of cytotoxic CD8+ T cells in tumors is associated with better prognosis. Using a Stat3 loss-of-function approach in two wnt/ß-catenin-dependent autochthonous models of sporadic intestinal tumorigenesis, we unravel a complex intracellular process in intestinal epithelial cells (IECs) that controls the induction of a CD8+ T cell based adaptive immune response. Elevated mitophagy in IECs causes iron(II)-accumulation in epithelial lysosomes, in turn, triggering lysosomal membrane permeabilization. Subsequent release of proteases into the cytoplasm augments MHC class I presentation and activation of CD8+ T cells via cross-dressing of dendritic cells. Thus, our findings highlight a so-far-unrecognized link between mitochondrial function, lysosomal integrity, and MHC class I presentation in IECs and suggest that therapies triggering mitophagy or inducing LMP in IECs may prove successful in shifting the balance toward anti-tumor immunity in colorectal cancer.


Assuntos
Imunidade Adaptativa , Mitofagia , Imunidade Adaptativa/efeitos dos fármacos , Animais , Azoximetano/toxicidade , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Permeabilidade da Membrana Celular , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Compostos Ferrosos/metabolismo , Humanos , Interferon gama/metabolismo , Interferon gama/farmacologia , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mitofagia/efeitos dos fármacos , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Taxa de Sobrevida
7.
Cell ; 165(2): 317-30, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27058664

RESUMO

BRAF(V600E) mutant colon cancers (CCs) have a characteristic gene expression signature that is also found in some tumors lacking this mutation. Collectively, they are referred to as "BRAF-like" tumors and represent some 20% of CCs. We used a shRNA-based genetic screen focused on genes upregulated in BRAF(V600E) CCs to identify vulnerabilities of this tumor subtype that might be exploited therapeutically. Here, we identify RANBP2 (also known as NUP358) as essential for survival of BRAF-like, but not for non-BRAF-like, CC cells. Suppression of RANBP2 results in mitotic defects only in BRAF-like CC cells, leading to cell death. Mechanistically, RANBP2 silencing reduces microtubule outgrowth from the kinetochores, thereby inducing spindle perturbations, providing an explanation for the observed mitotic defects. We find that BRAF-like CCs display far greater sensitivity to the microtubule poison vinorelbine both in vitro and in vivo, suggesting that vinorelbine is a potential tailored treatment for BRAF-like CCs.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Vimblastina/análogos & derivados , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Células Cultivadas , Neoplasias do Colo/classificação , Neoplasias do Colo/tratamento farmacológico , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Chaperonas Moleculares/genética , Transplante de Neoplasias , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas Proto-Oncogênicas B-raf/genética , Vimblastina/administração & dosagem , Vimblastina/farmacologia , Vinorelbina
8.
Cell ; 167(2): 444-456.e14, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27716507

RESUMO

While conventional pathogenic protists have been extensively studied, there is an underappreciated constitutive protist microbiota that is an integral part of the vertebrate microbiome. The impact of these species on the host and their potential contributions to mucosal immune homeostasis remain poorly studied. Here, we show that the protozoan Tritrichomonas musculis activates the host epithelial inflammasome to induce IL-18 release. Epithelial-derived IL-18 promotes dendritic cell-driven Th1 and Th17 immunity and confers dramatic protection from mucosal bacterial infections. Along with its role as a "protistic" antibiotic, colonization with T. musculis exacerbates the development of T-cell-driven colitis and sporadic colorectal tumors. Our findings demonstrate a novel mutualistic host-protozoan interaction that increases mucosal host defenses at the cost of an increased risk of inflammatory disease.


Assuntos
Colite/imunologia , Colite/parasitologia , Interações Hospedeiro-Parasita , Inflamassomos/imunologia , Mucosa Intestinal/parasitologia , Microbiota/imunologia , Tricomoníase/imunologia , Trichomonas/imunologia , Animais , Colite/microbiologia , Dientamoeba/imunologia , Imunidade nas Mucosas , Interleucina-18/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Simbiose , Células Th1/imunologia , Células Th17/imunologia
9.
CA Cancer J Clin ; 73(3): 286-319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36495087

RESUMO

Cancer is one of the foremost health problems worldwide and is among the leading causes of death in the United States. Gastrointestinal tract cancers account for almost one third of the cancer-related mortality globally, making it one of the deadliest groups of cancers. Early diagnosis and prompt management are key to preventing cancer-related morbidity and mortality. With advancements in technology and endoscopic techniques, endoscopy has become the core in diagnosis and management of gastrointestinal tract cancers. In this extensive review, the authors discuss the role endoscopy plays in early detection, diagnosis, and management of esophageal, gastric, colorectal, pancreatic, ampullary, biliary tract, and small intestinal cancers.


Assuntos
Gastroenterologia , Neoplasias Gastrointestinais , Humanos , Estados Unidos/epidemiologia , Neoplasias Gastrointestinais/diagnóstico , Neoplasias Gastrointestinais/terapia , Endoscopia/métodos , Pâncreas
10.
Immunity ; 49(3): 504-514.e4, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30231984

RESUMO

The adaptor protein CARD9 links detection of fungi by surface receptors to the activation of the NF-κB pathway. Mice deficient in CARD9 exhibit dysbiosis and are more susceptible to colitis. Here we examined the impact of Card9 deficiency in the development of colitis-associated colon cancer (CAC). Treatment of Card9-/- mice with AOM-DSS resulted in increased tumor loads as compared to WT mice and in the accumulation of myeloid-derived suppressor cells (MDSCs) in tumor tissue. The impaired fungicidal functions of Card9-/- macrophages led to increased fungal loads and variation in the overall composition of the intestinal mycobiota, with a notable increase in C. tropicalis. Bone marrow cells incubated with C. tropicalis exhibited MDSC features and suppressive functions. Fluconazole treatment suppressed CAC in Card9-/- mice and was associated with decreased MDSC accumulation. The frequency of MDSCs in tumor tissues of colon cancer patients correlated positively with fungal burden, pointing to the relevance of this regulatory axis in human disease.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Colite/imunologia , Neoplasias do Colo/imunologia , Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Células Supressoras Mieloides/fisiologia , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Colite/induzido quimicamente , Colite/genética , Neoplasias do Colo/genética , Disbiose/genética , Humanos , Interferon gama/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Supressoras Mieloides/microbiologia , Regiões Promotoras Genéticas/genética
11.
Immunity ; 49(2): 353-362.e5, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30119997

RESUMO

The epithelium and immune compartment in the intestine are constantly exposed to a fluctuating external environment. Defective communication between these compartments at this barrier surface underlies susceptibility to infections and chronic inflammation. Environmental factors play a significant, but mechanistically poorly understood, role in intestinal homeostasis. We found that regeneration of intestinal epithelial cells (IECs) upon injury through infection or chemical insults was profoundly influenced by the environmental sensor aryl hydrocarbon receptor (AHR). IEC-specific deletion of Ahr resulted in failure to control C. rodentium infection due to unrestricted intestinal stem cell (ISC) proliferation and impaired differentiation, culminating in malignant transformation. AHR activation by dietary ligands restored barrier homeostasis, protected the stem cell niche, and prevented tumorigenesis via transcriptional regulation of of Rnf43 and Znrf3, E3 ubiquitin ligases that inhibit Wnt-ß-catenin signaling and restrict ISC proliferation. Thus, activation of the AHR pathway in IECs guards the stem cell niche to maintain intestinal barrier integrity.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Epiteliais/fisiologia , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Receptores de Hidrocarboneto Arílico/metabolismo , Células-Tronco/citologia , Junções Íntimas/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinogênese/patologia , Diferenciação Celular/imunologia , Linhagem Celular , Proliferação de Células , Citrobacter rodentium/imunologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/microbiologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Hidrocarboneto Arílico/genética , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitina-Proteína Ligases/genética , Via de Sinalização Wnt/fisiologia
12.
J Biol Chem ; 300(7): 107415, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815863

RESUMO

While deubiquitinase ATXN3 has been implicated as a potential oncogene in various types of human cancers, its role in colon adenocarcinoma remains understudied. Surprisingly, our findings demonstrate that ATXN3 exerts an antitumor effect in human colon cancers through potentiating Galectin-9-induced apoptosis. CRISPR-mediated ATXN3 deletion unexpectedly intensified colon cancer growth both in vitro and in xenograft colon cancers. At the molecular level, we identified ATXN3 as a bona fide deubiquitinase specifically targeting Galectin-9, as ATXN3 interacted with and inhibited Galectin-9 ubiquitination. Consequently, targeted ATXN3 ablation resulted in reduced Galectin-9 protein expression, thereby diminishing Galectin-9-induced colon cancer apoptosis and cell growth arrest. The ectopic expression of Galectin-9 fully reversed the growth of ATXN3-null colon cancer in mice. Furthermore, immunohistochemistry staining revealed a significant reduction in both ATXN3 and Galectin-9 protein expression, along with a positive correlation between them in human colon cancer. Our study identifies the first Galectin-9-specific deubiquitinase and unveils a tumor-suppressive role of ATXN3 in human colon cancer.


Assuntos
Adenocarcinoma , Apoptose , Ataxina-3 , Neoplasias do Colo , Galectinas , Humanos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Neoplasias do Colo/genética , Galectinas/metabolismo , Galectinas/genética , Animais , Ataxina-3/metabolismo , Ataxina-3/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma/genética , Camundongos , Linhagem Celular Tumoral , Ubiquitinação , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Repressoras
13.
J Cell Sci ; 136(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36606487

RESUMO

53BP1 (also known as TP53BP1) is a key mediator of the non-homologous end joining (NHEJ) DNA repair pathway, which is the primary repair pathway in interphase cells. However, the mitotic functions of 53BP1 are less well understood. Here, we describe 53BP1 mitotic stress bodies (MSBs) formed in cancer cell lines in response to delayed mitosis. These bodies displayed liquid-liquid phase separation characteristics, were close to centromeres, and included lamin A/C and the DNA repair protein RIF1. After release from mitotic arrest, 53BP1 MSBs decreased in number and moved away from the chromatin. Using GFP fusion constructs, we found that the 53BP1 oligomerization domain region was required for MSB formation, and that inclusion of the 53BP1 N terminus increased MSB size. Exogenous expression of 53BP1 did not increase MSB size or number but did increase levels of MSB-free 53BP1. This was associated with slower mitotic progression, elevated levels of DNA damage and increased apoptosis, which is consistent with MSBs suppressing a mitotic surveillance by 53BP1 through sequestration. The 53BP1 MSBs, which were also found spontaneously in a subset of normally dividing cancer cells but not in non-transformed cells (ARPE-19), might facilitate the survival of cancer cells following aberrant mitoses. This article has an associated First Person interview with the first author of the paper.


Assuntos
Reparo do DNA , Neoplasias , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Humanos , Cromatina , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Mitose , Neoplasias/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral
14.
Gastroenterology ; 166(2): 323-337.e7, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37858797

RESUMO

BACKGROUND & AIMS: Dietary fibers are mainly fermented by the gut microbiota, but their roles in colorectal cancer (CRC) are largely unclear. Here, we investigated the associations of different fibers with colorectal tumorigenesis in mice. METHODS: Apcmin/+ mice and C57BL/6 mice with azoxymethane (AOM) injection were used as CRC mouse models. Mice were fed with mixed high-fiber diet (20% soluble fiber and 20% insoluble fiber), high-inulin diet, high-guar gum diet, high-cellulose diet, or diets with different inulin dose. Germ-free mice were used for validation. Fecal microbiota and metabolites were profiled by shotgun metagenomic sequencing and liquid chromatography-mass spectrometry, respectively. RESULTS: Mixed high-fiber diet promoted colorectal tumorigenesis with increased tumor number and tumor load in AOM-treated and Apcmin/+ mice. Antibiotics use abolished the pro-tumorigenic effect of mixed high-fiber diet, while transplanting stools from mice fed with mixed high-fiber diet accelerated tumor growth in AOM-treated germ-free mice. We therefore characterized the contribution of soluble and insoluble fiber in CRC separately. Our results revealed that soluble fiber inulin or guar gum, but not insoluble fiber cellulose, promoted colorectal tumorigenesis in AOM-treated and Apcmin/+ mice. Soluble fiber induced gut dysbiosis with Bacteroides uniformis enrichment and Bifidobacterium pseudolongum depletion, accompanied by increased fecal butyrate and serum bile acids and decreased inosine. We also identified a positive correlation between inulin dosage and colorectal tumorigenesis. Moreover, transplanting stools from mice fed with high-inulin diet increased colonic cell proliferation and oncogene expressions in germ-free mice. CONCLUSION: High-dose soluble but not insoluble fiber potentiates colorectal tumorigenesis in a dose-dependent manner by dysregulating gut microbiota and metabolites in mice.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Camundongos , Animais , Inulina/farmacologia , Camundongos Endogâmicos C57BL , Carcinogênese , Fibras na Dieta/metabolismo , Celulose/farmacologia , Azoximetano , Neoplasias Colorretais/patologia
15.
FASEB J ; 38(1): e23378, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38127104

RESUMO

In recent years, accumulating evidence has demonstrated the role of long noncoding RNAs (lncRNAs) in colon cancer. We aim to investigate the role of MIR143HG, also known as CARMN (Cardiac mesoderm enhancer-associated noncoding RNA) in colon cancer and explore the related mechanisms. An RNAseq data analysis was performed to screen differentially expressed lncRNAs associated with colon cancer. Next, MIR143HG expression was quantified in colon cancer cells. Moreover, the contributory roles of MIR143HG in the progression of colon cancer with the involvement of DNMT1 and HOXB7 (Homeobox B7) were evaluated after restored MIR143HG or depleted HOXB7. Finally, the effects of MIR143HG were investigated in vivo by measuring tumor formation in nude mice. High-throughput transcriptome sequencing was employed to validate the specific mechanisms by which MIR143HG and HOXB7 affect tumor growth in vivo. MIR143HG was found to be poorly expressed, while HOXB7 was highly expressed in colon cancer. MIR143HG could promote HOXB7 methylation by recruiting DNMT1 to reduce HOXB7 expression. Upregulation of MIR143HG or downregulation of HOXB7 inhibited cell proliferation, invasion and migration and facilitated apoptosis in colon cancer cells so as to delay the progression of colon cancer. The same trend was identified in vivo. Our study provides evidence that restoration of MIR143HG suppressed the progression of colon cancer via downregulation of HOXB7 through DNMT1-mediated HOXB7 promoter methylation. Thus, MIR143HG may be a potential candidate for the treatment of colon cancer.


Assuntos
Neoplasias do Colo , DNA (Citosina-5-)-Metiltransferase 1 , Proteínas de Homeodomínio , RNA Longo não Codificante , Animais , Camundongos , Neoplasias do Colo/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Proteínas de Homeodomínio/genética , Metilação , Metiltransferases , Camundongos Nus , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , Fatores de Transcrição , Humanos
16.
EMBO Rep ; 24(9): e56230, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37489617

RESUMO

Fibrillarin (FBL) is a highly conserved nucleolar methyltransferase responsible for methylation of ribosomal RNA and proteins. Here, we reveal a role for FBL in DNA damage response and its impact on cancer proliferation and sensitivity to DNA-damaging agents. FBL is highly expressed in various cancers and correlates with poor survival outcomes in cancer patients. Knockdown of FBL sensitizes tumor cells and xenografts to DNA crosslinking agents, and leads to homologous recombination-mediated DNA repair defects. We identify Y-box-binding protein-1 (YBX1) as a key interacting partner of FBL, and FBL increases the nuclear accumulation of YBX1 in response to DNA damage. We show that FBL promotes the expression of BRCA1 by increasing the binding of YBX1 to the BRCA1 promoter. Our study sheds light on the regulatory mechanism of FBL in tumorigenesis and DNA damage response, providing potential therapeutic targets to overcome chemoresistance in cancer.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Antineoplásicos/uso terapêutico , Dano ao DNA , Linhagem Celular Tumoral , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/metabolismo , Proteína BRCA1/genética
17.
J Pathol ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092716

RESUMO

Colorectal cancer (CRC) is one of the most frequently occurring cancers, but prognostic biomarkers identifying patients at risk of recurrence are still lacking. In this study, we aimed to investigate in more detail the spatial relationship between intratumoural T cells, cancer cells, and cancer cell hallmarks as prognostic biomarkers in stage III colorectal cancer patients. We conducted multiplexed imaging of 56 protein markers at single-cell resolution on resected fixed tissue from stage III CRC patients who received adjuvant 5-fluorouracil (5FU)-based chemotherapy. Images underwent segmentation for tumour, stroma, and immune cells, and cancer cell 'state' protein marker expression was quantified at a cellular level. We developed a Python package for estimation of spatial proximity, nearest neighbour analysis focusing on cancer cell-T-cell interactions at single-cell level. In our discovery cohort (Memorial Sloan Kettering samples), we processed 462 core samples (total number of cells: 1,669,228) from 221 adjuvant 5FU-treated stage III patients. The validation cohort (Huntsville Clearview Cancer Center samples) consisted of 272 samples (total number of cells: 853,398) from 98 stage III CRC patients. While there were trends for an association between the percentage of cytotoxic T cells (across the whole cancer core), it did not reach significance (discovery cohort: p = 0.07; validation cohort: p = 0.19). We next utilised our region-based nearest neighbour approach to determine the spatial relationships between cytotoxic T cells, helper T cells, and cancer cell clusters. In both cohorts, we found that shorter distance between cytotoxic T cells, T helper cells, and cancer cells was significantly associated with increased disease-free survival. An unsupervised trained model that clustered patients based on the median distance between immune cells and cancer cells, as well as protein expression profiles, successfully classified patients into low-risk and high-risk groups (discovery cohort: p = 0.01; validation cohort: p = 0.003). © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

18.
J Pathol ; 263(3): 328-337, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38629257

RESUMO

Peritoneal metastasis of colorectal origin appears in ~10-15% of patients at the time of diagnosis and in 30-40% of cases with disease progression. Locoregional spread through the peritoneum is considered stage IVc and is associated with a poor prognosis. The development of a regional therapeutic strategy based on cytoreductive surgery, and hyperthermic intra-abdominal chemotherapy has significantly altered the course of the disease. Although recent evidence supports the benefits of cytoreductive surgery, the benefits of hyperthermic intra-abdominal chemotherapy are, however, still a matter of debate. Understanding the molecular alterations underlying the disease is crucial for developing new therapeutic strategies. Here, we evaluated the involvement in peritoneal dissemination of the oncogenic isoform of TP73, ΔNp73, and its effector targets in in vitro and mouse models, and in 30 patients diagnosed with colorectal peritoneal metastasis. In an orthotopic mouse model, we observed that tumor cells overexpressing ΔNp73 present a higher avidity for the peritoneum and that extracellular vesicles secreted by ΔNp73-upregulating tumor cells enhance their dissemination. In addition, we identified that tumor cells overexpressing ΔNp73 present with dysregulation of genes associated with an epithelial/mesothelial-to-mesenchymal transition (MMT) and that mesothelial cells exposed to the conditioned medium of tumor cells with upregulated ΔNp73 present a mesenchymal phenotype. Lastly, ΔNp73 and its effector target RNAs were dysregulated in our patient series, there were positive correlations between ΔNp73 and its effector targets, and MSN and ITGB4 (ΔNp73 effectors) predicted patient survival. In conclusion, ΔNp73 and its effector targets are involved in the peritoneal dissemination of colorectal cancer and predict patient survival. The promotion of the EMT/MMT and modulation of the adhesion capacity in colorectal cancer cells might be the mechanisms triggered by ΔNp73. Remarkably, ΔNp73 protein is a druggable protein and should be the focus of future studies. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Neoplasias Peritoneais , Proteína Tumoral p73 , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Peritoneais/secundário , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/metabolismo , Neoplasias Peritoneais/patologia , Animais , Masculino , Feminino , Proteína Tumoral p73/metabolismo , Proteína Tumoral p73/genética , Pessoa de Meia-Idade , Idoso , Camundongos , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral
19.
Mol Ther ; 32(6): 2021-2029, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38582964

RESUMO

We previously demonstrated the antitumor effectiveness of transiently T cell receptor (TCR)-redirected T cells recognizing a frameshift mutation in transforming growth factor beta receptor 2. We here describe a clinical protocol using mRNA TCR-modified T cells to treat a patient with progressive, treatment-resistant metastatic microsatellite instability-high (MSI-H) colorectal cancer. Following 12 escalating doses of autologous T cells electroporated with in-vitro-transcribed Radium-1 TCR mRNA, we assessed T cell cytotoxicity, phenotype, and cytokine production. Tumor markers and growth on computed tomography scans were evaluated and immune cell tumor infiltrate at diagnosis assessed. At diagnosis, tumor-infiltrating CD8+ T cells had minimal expression of exhaustion markers, except for PD-1. Injected Radium-1 T cells were mainly naive and effector memory T cells with low expression of exhaustion markers, except for TIGIT. We confirmed cytotoxicity of transfected Radium-1 T cells against target cells and found key cytokines involved in tumor metastasis, growth, and angiogenesis to fluctuate during treatment. The treatment was well tolerated, and despite his advanced cancer, the patient obtained a stable disease with 6 months survival post-treatment. We conclude that treatment of metastatic MSI-H colorectal cancer with autologous T cells electroporated with Radium-1 TCR mRNA is feasible, safe, and well tolerated and that it warrants further investigation in a phase 1/2 study.


Assuntos
Neoplasias Colorretais , Instabilidade de Microssatélites , Receptores de Antígenos de Linfócitos T , Humanos , Neoplasias Colorretais/terapia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Masculino , Imunoterapia Adotiva/métodos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Citocinas/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Resultado do Tratamento , Linfócitos T/imunologia , Linfócitos T/metabolismo , Pessoa de Meia-Idade , Citotoxicidade Imunológica
20.
Mol Cell ; 68(1): 171-184.e6, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28985503

RESUMO

A substantial fraction of eukaryotic transcripts are considered long non-coding RNAs (lncRNAs), which regulate various hallmarks of cancer. Here, we discovered that the lncRNA HOXB-AS3 encodes a conserved 53-aa peptide. The HOXB-AS3 peptide, not lncRNA, suppresses colon cancer (CRC) growth. Mechanistically, the HOXB-AS3 peptide competitively binds to the ariginine residues in RGG motif of hnRNP A1 and antagonizes the hnRNP A1-mediated regulation of pyruvate kinase M (PKM) splicing by blocking the binding of the ariginine residues in RGG motif of hnRNP A1 to the sequences flanking PKM exon 9, ensuring the formation of lower PKM2 and suppressing glucose metabolism reprogramming. CRC patients with low levels of HOXB-AS3 peptide have poorer prognoses. Our study indicates that the loss of HOXB-AS3 peptide is a critical oncogenic event in CRC metabolic reprogramming. Our findings uncover a complex regulatory mechanism of cancer metabolism reprogramming orchestrated by a peptide encoded by an lncRNA.


Assuntos
Transformação Celular Neoplásica/genética , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Peptídeos/genética , RNA Longo não Codificante/genética , Processamento Alternativo , Motivos de Aminoácidos , Animais , Ligação Competitiva , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Éxons , Células HeLa , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Peptídeos/antagonistas & inibidores , Peptídeos/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA