Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(24): e2320215121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38830103

RESUMO

The Kuiper Belt object (KBO) Arrokoth, the farthest object in the Solar System ever visited by a spacecraft, possesses a distinctive reddish surface and is characterized by pronounced spectroscopic features associated with methanol. However, the fundamental processes by which methanol ices are converted into reddish, complex organic molecules on Arrokoth's surface have remained elusive. Here, we combine laboratory simulation experiments with a spectroscopic characterization of methanol ices exposed to proxies of galactic cosmic rays (GCRs). Our findings reveal that the surface exposure of methanol ices at 40 K can replicate the color slopes of Arrokoth. Sugars and their derivatives (acids, alcohols) with up to six carbon atoms, including glucose and ribose-fundamental building block of RNA-were ubiquitously identified. In addition, polycyclic aromatic hydrocarbons (PAHs) with up to six ring units (13C22H12) were also observed. These sugars and their derivatives along with PAHs connected by unsaturated linkers represent key molecules rationalizing the reddish appearance of Arrokoth. The formation of abundant sugar-related molecules dubs Arrokoth as a sugar world and provides a plausible abiotic preparation route for a key class of biorelevant molecules on the surface of KBOs prior to their delivery to prebiotic Earth.

2.
Proc Natl Acad Sci U S A ; 121(23): e2308531121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805288

RESUMO

Many animals exhibit remarkable colors that are produced by the constructive interference of light reflected from arrays of intracellular guanine crystals. These animals can fine-tune their crystal-based structural colors to communicate with each other, regulate body temperature, and create camouflage. While it is known that these changes in color are caused by changes in the angle of the crystal arrays relative to incident light, the cellular machinery that drives color change is not understood. Here, using a combination of 3D focused ion beam scanning electron microscopy (FIB-SEM), micro-focused X-ray diffraction, superresolution fluorescence light microscopy, and pharmacological perturbations, we characterized the dynamics and 3D cellular reorganization of crystal arrays within zebrafish iridophores during norepinephrine (NE)-induced color change. We found that color change results from a coordinated 20° tilting of the intracellular crystals, which alters both crystal packing and the angle at which impinging light hits the crystals. Importantly, addition of the dynein inhibitor dynapyrazole-a completely blocked this NE-induced red shift by hindering crystal dynamics upon NE addition. FIB-SEM and microtubule organizing center (MTOC) mapping showed that microtubules arise from two MTOCs located near the poles of the iridophore and run parallel to, and in between, individual crystals. This suggests that dynein drives crystal angle change in response to NE by binding to the limiting membrane surrounding individual crystals and walking toward microtubule minus ends. Finally, we found that intracellular cAMP regulates the color change process. Together, our results provide mechanistic insight into the cellular machinery that drives structural color change.


Assuntos
Peixe-Zebra , Animais , Norepinefrina/metabolismo , Norepinefrina/farmacologia , Cor , Pigmentação/fisiologia , Microscopia Eletrônica de Varredura , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/química
3.
Nano Lett ; 24(39): 12307-12314, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39311853

RESUMO

We demonstrate distinctive structural colors within a small footprint by using a short chain of nanospheres. Rather than using high-index materials like Si (n ∼ 4), which ensure strong modal confinement, TiO2 is employed. TiO2 has an intermediate index (n ∼ 2), promoting stronger modal coupling between the magnetic dipoles of each particle. This approach enables selective engineering of the magnetic response and yields larger spectral changes compared to that of Si. Despite the lower refractive index, the absence of absorption in TiO2 also produces higher scattering intensities than Si. We develop a quasistatic analytical model that describes the dipolar modal coupling in a trimer and use it to reveal distinct magnetic field strengths in the outer or central particle depending on the polarization of incident light. These results suggest pathways to manipulate the magnetic field in chains of particles and create vibrant structural colors with simple configurations.

4.
Nano Lett ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39329370

RESUMO

Femtosecond (fs) laser pulses drive matter into a highly nonequilibrium state, allowing precise sculpturing of irradiated surface sites with sophisticated nanomorphologies. Here, we used fs-laser patterning to create diverse plasmonic morphologies on the top Au layer of the metal-insulator-metal sandwich. Mutual action of laser-driven thermomechanical effects and ultrafast solid-to-liquid transition allows control of the morphology resulting in pronounced surface reflectivity modulation, i.e., in a structural color effect. This enables template-free high-resolution color printing at a superior lateral resolution up to 50000 dots per inch and facile tunability of the color tone and saturation. Moreover, precise control over the orientation of the printed nanostructures within subwavelength lattices allows modulation of their local plasmonic response encrypting the optical information within the colorful images. The hidden information can be unveiled using a facile cross-polarized optical visualization scheme, rendering the proposed method with extra modalities combining high resolution information encryption, coloring, and security labeling.

5.
Nano Lett ; 24(6): 1859-1866, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38289656

RESUMO

Afterglow materials with time-dependent color output emerge as huge prospects in advanced optical information encryption but remain a formidable challenge due to the limited exciton transfer from a single emission center. Here, multiple time-dependent afterglow color evolutions are achieved by the strategy of controllable assembly of dual carbon dots (CDs) with an individual afterglow color and decay rate into an RHO zeolite. The strategy possesses high controllability such that B-CDs and G-CDs can be independently generated and in situ embedded into a matrix; in particular, the doped amount of two kinds of CDs can be adjusted conveniently to produce interesting variable afterglow colors. Triggered by different excitations, the prepared B&G-CDs@RHO composites exhibit the conversion of TADF and RTP behaviors, as well as time-dependent afterglow color output from deep-blue to green (365 nm excitation) and static cyan (254 nm excitation). The unique luminescence and excellent stability allow the composite applied in information encryption with high-security levels.

6.
Small ; : e2401063, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990072

RESUMO

Structural colors generated via total internal reflection (TIR) using nanostructure-free micro-concave shapes have garnered increasing attention. However, the application of large micro-concave structures for structural coloration remains limited. Herein, a flexibly tunable structural color film fabricated by casting polydimethylsiloxane (PDMS) on an array of large poly(glycidyl methacrylate) (PGMA) bowl-shaped particles is reported. The resultant film exhibits tunable red to green structural colors with changing observation angles. Moreover, the color can be further tailored by altering the shape of the film itself. The incorporation of the PDMS layer not only facilitates a shift in the locus of TIR from the bottom surface to the top concave surface of the particles, thereby enabling the generation of structural color, but also confers enhanced flexibility to the film. Further decoration with silver nanoparticles imparts antimicrobial properties, yielding a novel antimicrobial coating material with structural colors. The simple and cost-effective strategy for the production of structural color films provides potential applications in antimicrobial coatings, enabling accessible and customizable structural coloration using big-size micro-concave particles.

7.
Small ; 20(3): e2302550, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37726238

RESUMO

The structural coloration of textiles with bionic photonic crystals (PCs) is expected to become a critical approach to the ecological coloration of textiles. Rapid and large-area preparation of PC structurally colored textiles can be achieved via self-assembly of high mass fractions of liquid photonic crystals (LPCs). However, the rapid and large-scale manufacturing of LPCs remains a challenge. In this work, the pH regulator is added in the process of emulsion polymerization to solve the problem of phase transformation caused by the thermal decomposition of the initiator to produce H+ , directly achieving 40 wt.% PS nanospheres in the dispersion. Then oligomers and small-molecule salts are removed from the system via dialysis, and the pre-crystallized LPC system is efficiently prepared. Adjusting the particle size and the mass fraction of nanospheres is shown to be an efficient way to control the optical properties of LPCs. The rapid and large-area preparation of PC structural color fabric and the patterned PC structural color fabric with an iridescent effect is implemented by using LPCs as the assembly intermediate. By constructing the encapsulation layer on the surface of the PC structural color fabric, the consistency of high structural stability and high color saturation of the PC is realized.

8.
Small ; 20(16): e2306323, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38039497

RESUMO

Room temperature phosphorescent (RTP) materials with long-lived, excitation-dependent, and time-dependent phosphorescence are highly desirable but very hard to achieve. Herein, this work reports a rational strategy of multiple wavelength excitation and time-dependent dynamic RTP color by confining silane-functionalized carbon dots (CDs) in a silica matrix (Si-CDs@SiO2). The Si-CDs@SiO2 possesses unique green-light-excitation and a change in phosphorescence color from yellow to green. A slow-decaying phosphorescence at 500 nm with a lifetime of 1.28 s and a fast-decaying phosphorescence at 580 nm with a lifetime of 0.90 s are observed under 365 nm of irradiation, which originated from multiple surface triplet states of the Si-CDs@SiO2. Given the unique dynamic RTP properties, the Si-CDs@SiO2 are demonstrated for applications in fingerprint recognition and multidimensional dynamic information encryption. These findings will open an avenue to explore dynamic phosphorescent materials and significantly broaden their applications.

9.
Small ; 20(40): e2400578, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38805746

RESUMO

Passive radiative cooling (PRC) can spontaneously dissipate heat to outer space through atmospheric transparent windows, providing a promising path to meet sustainable development goals. However, achieving simultaneously high transparency, color-customizable, and thermal management of PRC anti ultraviolet (anti-UV) films remains a challenge. Herein, a simple strategy is proposed to utilize liquid crystalline polymer, with high mid-infrared emissive, forming customizable structural color film by molecular self-assembly and polymerization-induced pitch gradient, which guarantees the balance of transparency in visible spectrum and sunlight reflection, rendering anti-UV colored window for thermal management. By performing tests, temperature fall of 5.4 and 7.9 °C are demonstrated at noon with solar intensity of 717 W m-2 and night, respectively. Vivid red-, green-, blue-structured colors, and colorless films are designed and implemented to suppress the solar input and control the effective visible light transmissivity considering the efficiency function of human vision. In addition, temperature rise of 11.1 °C is achieved by applying an alternating current field on the PRC film. This study provides a new perspective on the thermal management and aesthetic functionalities of smart windows and wearables.

10.
Small ; 20(1): e2305185, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649162

RESUMO

Phosphorescent materials with time-dependent phosphorescence colors (TDPCs) have great potential in advanced optical applications. Synthesis of such materials is attractive but challenging. Here, a series of carbon dot-porous Al2 O3 composites exhibiting distinctive TDPC characteristics is prepared by high-temperature pyrolysis of Al-based metal-organic frameworks NH2 -MIL-101(Al). The composite synthesized at 700 °C (CDs@Al2 O3 -700) shows an obvious change in phosphorescence color from blue to green after removing the excitation light of 280 nm. Photophysical analysis reveals that two emission centers in CDs, namely carbon core and surface states, are responsible for the short-lived blue phosphorescence (96 ms) and long-lived green phosphorescence (911 ms), respectively. The combination of blue and green phosphorescence with different decay rates triggering the interesting TDPC phenomenon. CDs@Al2 O3 -700 has a significantly high phosphorescence quantum yield of up to 41.7% and possesses an excellent optical stability against water, organic solvents, and strong oxidants, which benefits from the multi-confinement of CDs by the porous Al2 O3 matrix through rigid network, strong space constraint, and stable covalent bonding. Based on the TDPC property, multilevel coding patterns composed of CDs@Al2 O3 are successfully fabricated for advanced dynamic information encryption.

11.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34911759

RESUMO

Chiral asymmetry is important in a wide variety of disciplines and occurs across length scales. While several natural chiral biomolecules exist only with single handedness, they can produce complex hierarchical structures with opposite chiralities. Understanding how the handedness is transferred from molecular to the macroscopic scales is far from trivial. An intriguing example is the transfer of the handedness of helicoidal organizations of cellulose microfibrils in plant cell walls. These cellulose helicoids produce structural colors if their dimension is comparable to the wavelength of visible light. All previously reported examples of a helicoidal structure in plants are left-handed except, remarkably, in the Pollia condensata fruit; both left- and right-handed helicoidal cell walls are found in neighboring cells of the same tissue. By simultaneously studying optical and mechanical responses of cells with different handednesses, we propose that the chirality of helicoids results from differences in cell wall composition. In detail, here we showed statistical substantiation of three different observations: 1) light reflected from right-handed cells is red shifted compared to light reflected from left-handed cells, 2) right-handed cells occur more rarely than left-handed ones, and 3) right-handed cells are located mainly in regions corresponding to interlocular divisions. Finally, 4) right-handed cells have an average lower elastic modulus compared to left-handed cells of the same color. Our findings, combined with mechanical simulation, suggest that the different chiralities of helicoids in the cell wall may result from different chemical composition, which strengthens previous hypotheses that hemicellulose might mediate the rotations of cellulose microfibrils.


Assuntos
Parede Celular/química , Commelinaceae/química , Frutas/química , Parede Celular/ultraestrutura , Celulose/química , Cor , Módulo de Elasticidade , Microfibrilas/química , Polissacarídeos/química
12.
Int J Biometeorol ; 68(6): 1143-1154, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38509399

RESUMO

Outdoor thermal comfort has become an important factor affecting human mental and physical health due to rapid urbanization. This study aimed to investigate the influence of brightness and prominent colors on thermal perception in hot summer and cold winter regions. Meteorological measurements were conducted accompanied by subjective thermal and visual questionnaires (n = 2020) during summer and winter. The physiological equivalent temperature (PET) was applied as thermal indices to evaluate the influence of visual conditions on thermal perception. The results showed that (1) the neutral PET is 20.2 °C with a range of 14.8 ~ 25.7 °C in Chongqing and neutral illumination range is 0 ~ 8663 lx. (2) Thermal sensitivity is most great in neutral brightness than bright and too bright groups. The influence of outdoor prominent colors in winter supports hue-heat hypothesis. However, in summer, result only supports the hypothesis under low thermal stress. Both cool and warm colors can reduce the thermal sensitivity of visitors compared to neutral colors (gray and white). (3) The interactions between colors and brightness are more obvious under low thermal stress levels. (4) Thermal perceptions of females are more greatly affected by brightness and prominent colors compared with males. These results could help landscape designers better understand the correlation between the thermal and visual environments and provide a reference for comprehensive designs of urban open spaces.


Assuntos
Cor , Sensação Térmica , Humanos , China , Feminino , Masculino , Adulto , Adulto Jovem , Estações do Ano , Temperatura
13.
Nano Lett ; 23(12): 5581-5587, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37278483

RESUMO

Metasurface-based structural color with high resolution is promising for color printing and encryption. However, achieving tunable structural colors in practical applications is challenging owing to the immutability after the fabrication of metasurfaces. Herein, we proposed the polarization-switchable dielectric metasurfaces with full colors. The colorful images can be switched on/off by controlling the polarization of incident light. For the nanorods metasurfaces, all colors turned to black in the "off" mode because of the near-zero reflection, and the uniform black was advantageous for designing encryption applications. For the nanocrosses metasurfaces, colors reversed in two different "on" modes and images hidden in the "off" mode. With the polarization-sensitive metasurfaces, a fish-bird image, an overlapped dual-channel image, and a green-red heart image were obtained, respectively. The demonstrations can be applied to dynamic displays, optical cryptography, multichannel imaging, and optical data storage.

14.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000294

RESUMO

Vivid-colored phycobiliproteins (PBPs) have emerging potential as food colors and alternative proteins in the food industry. However, enhancing their application potential requires increasing stability, cost-effective purification processes, and consumer acceptance. This narrative review aimed to highlight information regarding the critical aspects of PBP research that is needed to improve their food industry potential, such as stability, food fortification, development of new PBP-based food products, and cost-effective production. The main results of the literature review show that polysaccharide and protein-based encapsulations significantly improve PBPs' stability. Additionally, while many studies have investigated the ability of PBPs to enhance the techno-functional properties, like viscosity, emulsifying and stabilizing activity, texture, rheology, etc., of widely used food products, highly concentrated PBP food products are still rare. Therefore, much effort should be invested in improving the stability, yield, and sensory characteristics of the PBP-fortified food due to the resulting unpleasant sensory characteristics. Considering that most studies focus on the C-phycocyanin from Spirulina, future studies should concentrate on less explored PBPs from red macroalgae due to their much higher production potential, a critical factor for positioning PBPs as alternative proteins.


Assuntos
Indústria Alimentícia , Ficobiliproteínas , Ficobiliproteínas/química , Indústria Alimentícia/métodos , Corantes de Alimentos/química , Humanos
15.
Angew Chem Int Ed Engl ; : e202414136, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39161230

RESUMO

Responsive photonic crystals (RPCs) exhibit dynamic chromism upon trigger by various solvents, showing potential applications in qualitative identification and quantitative analysis of multicomponent solvents. However, distinguishing similar solvents, especially traces of cosolvents, remains challenging due to the limited sensitivity of RPCs. To address this, we herein introduce brush-like polymeric gels inside photonic crystals, forming a brush-like polymeric photonic gel (BPPG) that can trace tiny component changes. In this BPPG system, the acrylate backbones and PEG side-chains stretch incrementally due to the cosolvency of ethanol-water mixtures, resulting in highly sensitive chromatic responses within ethanol-rich concentrations. With water content varying slightly from 0 to 1 vol%, the reflection wavelength of BPPG can sharply redshift over 30 nm, leading to very noticeable changes in structural color. This enhanced sensitivity makes BPPG suitable for real-time, in-situ purity monitoring of absolute ethanol during storage, transportation, and other applications.

16.
Adv Funct Mater ; 33(23)2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37293509

RESUMO

Structural colorful cholesterics show impressive susceptibility to external stimulation, leading to applications in electro/mechano-chromic devices. However, out-of-plane actuation of structural colorful actuators based on cholesterics and the integration with other stimulation remains underdeveloped. Herein, colorful actuators and motile humidity sensors are developed using humidity-responsive cholesteric liquid crystal networks (CLCNs) and magnetic composites. The developed colorful actuator can exhibit synergistic out-of-plane shape morphing and color change in response to humidity, with CLCNs as colorful artificial muscles. Through the integration with magnetic control, the motile sensor can be navigated to open and confined spaces with the aid of friction to detect local relative humidity. The integration of multi-stimulation actuation of cholesteric magnetic actuators will expand the research frontier of structural colorful actuators and motile sensors for confined spaces.

17.
Small ; : e2309512, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072633

RESUMO

Colloids self-organize into icosahedral clusters composed of a Mackay core and an anti-Mackay shell under spherical confinement to minimize the free energy. This study explores the variation of surface arrangements of colloids in icosahedral clusters, focusing on the determining factors behind the surface arrangement. To efficiently assemble particles in emulsion droplets, droplet-to-droplet osmotic extraction from particle-laden droplets to salt-containing droplets is used, where the droplets are microfluidically prepared to guarantee a high size uniformity. The icosahedral clusters are optimally produced during a 24-h consolidation period at a 0.04 m salt concentration. The findings reveal an increase in the number of particle layers from 10 to 15 in the icosahedral clusters as the average number of particles increases from 3300 to 11 000. Intriguingly, the number of layers in the anti-Mackay shells, or surface termination, appears to more strongly depend on the sphericity of the clusters than on the deviation in the particle count from an ideal icosahedral cluster. This result suggests that the sphericity of the outermost layer, formed by the late-stage rearrangement of particles to form an anti-Mackay shell near the droplet interface, may play a pivotal role in determining the surface morphology to accommodate a spherical interface.

18.
Small ; 19(48): e2303500, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37541661

RESUMO

Optical Fourier surface is a unique patterned optical surface containing the precise sum of sinusoidal waves, each with a well-defined spatial frequency and amplitude. It can manipulate the desired diffracted light field through its Fourier transform, which brings a straightforward mathematical method for designing complex diffractive optics. However, the fabrication techniques typically have the drawbacks of low efficiency, limiting the large-scale industrial application of optical Fourier surfaces. This study presents a powerful approach, the multi-frequency vibration cutting (MFVC), to enable the high-efficiency fabrication of optical Fourier surfaces. A specific optical Fourier surface consisting of arbitrary frequency components of linear gratings has been fabricated on metallic surfaces using MFVC. Due to the capacity of multicomponent gratings in coupling red, green, and blue lights at the same incident angle, the RGB true color has been prepared. The additive and subtractive principles of mixing the three primary colors are demonstrated. The former relies on the light dispersion induced by grating diffraction, while the latter is based on the light absorption induced by the subwavelength grating-coupled surface plasma polarization (SPP). The experimental results of authentic structural true color on the aluminum surface verify the efficacy of MFVC in the fabrication of optical Fourier surfaces.

19.
Small ; 19(2): e2204630, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36382576

RESUMO

Biomimetic stimuli-responsive structure colors (SCs) can improve the visualization and identification in the micro functional structure field such as information encryption/decryption and smart actuators. However, it is still challenging to develop the ability to 4D print arbitrary submerged colorful patterns with stimuli-responsive materials at the microscale. Herein, a hydrogel photoresist with feature resolution (98 nm) for the fabrication of 4D microscopic SCs by the femtosecond direct laser writing method is developed. The 4D printed woodpile SCs are grouped as pixel palettes with various laser parameters and they spanned almost the entire color space. The coloring mechanism of diffraction gratings is not only investigated by optics microscopy and spectroscopy but also supported by simulation. Moreover, the 4D printed hydrogel-integrated amphichromatic fish constructions and pixelated painting can visually discolor reversibly by regulating the solution pH. This finding promises an ideal coloring method for sensors, anti-counterfeiting labels, and transformable photonic devices.


Assuntos
Luz , Fótons , Animais , Hidrogéis/química , Óptica e Fotônica , Lasers
20.
Small ; 19(22): e2300309, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36855329

RESUMO

Photonic crystals (PC) are of great importance in technology, especially in optics and photonics. In general, the structural color of PCs responds to external stimuli primarily by changing their periodicity. Herein, the authors report on refractive index (RI) adaptive PCs. Cross-linked cholesteric films with interconnected nanopores exhibit a very low RI without light scattering. Transparent PC films with maximum reflectance in the ultravoilet (UV) region respond to various chemicals by changing the reflective color of the PC. The authors demonstrate its unique colorimetric chemical detections of hazardous organic liquids. Loading various chemicals into nanopores significantly shifts the structural color into the visible range depending on the chemical's RI. These results are unique in that the structural color of photonic films is mediated by RI changes rather than periodicity changes. In principle, nanoporous photonic crystal films can detect the RI of a chemical substance by its unique color. In contrast to volumetric changes, this sensing mechanism offers several advantages, including durability, excellent sensitivity, fast response time, and wide detection range. These results provide useful insight into stimulus-responsive PCs. The structural color of PC films can be effectively tuned by adjusting average RIs instead of changing periodicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA