Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.164
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(15): e2318072121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38573966

RESUMO

As one of the most stunning biological nanostructures, the single-diamond (SD) surface discovered in beetles and weevils exoskeletons possesses the widest complete photonic bandgap known to date and is renowned as the "holy grail" of photonic materials. However, the synthesis of SD is difficult due to its thermodynamical instability compared to the energetically favoured bicontinuous double diamond and other easily formed lattices; thus, the artificial fabrication of SD has long been a formidable challenge. Herein, we report a bottom-up approach to fabricate SD titania networks via a one-pot cooperative assembly scenario employing the diblock copolymer poly(ethylene oxide)-block-polystyrene as a soft template and titanium diisopropoxide bis(acetylacetonate) as an inorganic precursor in a mixed solvent, in which the SD scaffold was obtained by kinetically controlled nucleation and growth in the skeletal channels of the diamond minimal surface formed by the polymer matrix. Electron crystallography investigations revealed the formation of tetrahedrally connected SD frameworks with the space group Fd [Formula: see text] m in a polycrystalline anatase form. A photonic bandgap calculation showed that the resulting SD structure has a wide and complete bandgap. This work solves the complex synthetic enigmas and offers a frontier in hyperbolic surfaces, biorelevant materials, next-generation optical devices, etc.

2.
Proc Natl Acad Sci U S A ; 121(9): e2313617121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377215

RESUMO

Additive manufacturing capable of controlling and dynamically modulating structures down to the nanoscopic scale remains challenging. By marrying additive manufacturing with self-assembly, we develop a UV (ultra-violet)-assisted direct ink write approach for on-the-fly modulation of structural color by programming the assembly kinetics through photo-cross-linking. We design a photo-cross-linkable bottlebrush block copolymer solution as a printing ink that exhibits vibrant structural color (i.e., photonic properties) due to the nanoscopic lamellar structures formed post extrusion. By dynamically modulating UV-light irradiance during printing, we can program the color of the printed material to access a broad spectrum of visible light with a single ink while also creating color gradients not previously possible. We unveil the mechanism of this approach using a combination of coarse-grained simulations, rheological measurements, and structural characterizations. Central to the assembly mechanism is the matching of the cross-linking timescale with the assembly timescale, which leads to kinetic trapping of the assembly process that evolves structural color from blue to red driven by solvent evaporation. This strategy of integrating cross-linking chemistry and out-of-equilibrium processing opens an avenue for spatiotemporal control of self-assembled nanostructures during additive manufacturing.

3.
Proc Natl Acad Sci U S A ; 120(34): e2301352120, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579167

RESUMO

Management of the plastic industry is a momentous challenge, one that pits enormous societal benefits against an accumulating reservoir of nearly indestructible waste. A promising strategy for recycling polyethylene (PE) and isotactic polypropylene (iPP), constituting roughly half the plastic produced annually worldwide, is melt blending for reformulation into useful products. Unfortunately, such blends are generally brittle and useless due to phase separation and mechanically weak domain interfaces. Recent studies have shown that addition of small amounts of semicrystalline PE-iPP block copolymers (ca. 1 wt%) to mixtures of these polyolefins results in ductility comparable to the pure materials. However, current methods for producing such additives rely on expensive reagents, prohibitively impacting the cost of recycling these inexpensive commodity plastics. Here, we describe an alternative strategy that exploits anionic polymerization of butadiene into block copolymers, with subsequent catalytic hydrogenation, yielding E and X blocks that are individually melt miscible with PE and iPP, where E and X are poly(ethylene-ran-ethylethylene) random copolymers with 6 wt% and 90 wt% ethylethylene repeat units, respectively. Cooling melt blended mixtures of PE and iPP containing 1 wt% of the triblock copolymer EXE of appropriate molecular weight, results in mechanical properties competitive with the component plastics. Blend toughness is obtained through interfacial topological entanglements of the amorphous X polymer and semicrystalline iPP, along with anchoring of the E blocks through cocrystallization with the PE homopolymer. Significantly, EXE can be inexpensively produced using currently practiced industrial scale polymerization methods, offering a practical approach to recycling the world's top two plastics.

4.
J Biol Chem ; 300(6): 107325, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685532

RESUMO

Immune checkpoint blockade (ICB) using monoclonal antibodies against programmed cell death protein 1 (PD-1) or programmed death-ligand 1 (PD-L1) is the treatment of choice for cancer immunotherapy. However, low tissue permeability, immunogenicity, immune-related adverse effects, and high cost could be possibly improved using alternative approaches. On the other hand, synthetic low-molecular-weight (LMW) PD-1/PD-L1 blockers have failed to progress beyond in vitro studies, mostly due to low binding affinity or poor pharmacological characteristics resulting from their limited solubility and/or stability. Here, we report the development of polymer-based anti-human PD-L1 antibody mimetics (α-hPD-L1 iBodies) by attaching the macrocyclic peptide WL12 to a N-(2-hydroxypropyl)methacrylamide copolymer. We characterized the binding properties of iBodies using surface plasmon resonance, enzyme-linked immunosorbent assay, flow cytometry, confocal microscopy, and a cellular ICB model. We found that the α-hPD-L1 iBodies specifically target human PD-L1 (hPD-L1) and block the PD-1/PD-L1 interaction in vitro, comparable to the atezolizumab, durvalumab, and avelumab licensed monoclonal antibodies targeting PD-L1. Our findings suggest that iBodies can be used as experimental tools to target hPD-L1 and could serve as a platform to potentiate the therapeutic effect of hPD-L1-targeting small molecules by improving their affinity and pharmacokinetic properties.


Assuntos
Antígeno B7-H1 , Inibidores de Checkpoint Imunológico , Humanos , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/química , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Polímeros/química , Linhagem Celular Tumoral
5.
EMBO J ; 40(12): e107270, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33885174

RESUMO

Paraspeckles are constructed by NEAT1_2 architectural long noncoding RNAs. Their characteristic cylindrical shapes, with highly ordered internal organization, distinguish them from typical liquid-liquid phase-separated condensates. We experimentally and theoretically investigated how the shape and organization of paraspeckles are determined. We identified the NEAT1_2 RNA domains responsible for shell localization of the NEAT1_2 ends, which determine the characteristic internal organization. Using the soft matter physics, we then applied a theoretical framework to understand the principles that determine NEAT1_2 organization as well as shape, number, and size of paraspeckles. By treating paraspeckles as amphipathic block copolymer micelles, we could explain and predict the experimentally observed behaviors of paraspeckles upon NEAT1_2 domain deletions or transcriptional modulation. Thus, we propose that paraspeckles are block copolymer micelles assembled through a type of microphase separation, micellization. This work provides an experiment-based theoretical framework for the concept that ribonucleoprotein complexes (RNPs) can act as block copolymers to form RNA-scaffolding biomolecular condensates with optimal sizes and structures in cells.


Assuntos
Micelas , Polímeros , RNA Longo não Codificante , Ribonucleoproteínas , Linhagem Celular , Humanos
6.
Nano Lett ; 24(19): 5838-5846, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38661003

RESUMO

Nanostructures of drug carriers play a crucial role in nanomedicine due to their ability to influence drug delivery. There is yet no clear consensus regarding the optimal size and shape (e.g., aspect ratio) of nanoparticles for minimizing macrophage uptake, given the difficulties in controlling the shape and size of nanoparticles while maintaining identical surface properties. Here, we employed graft copolymer self-assembly to prepare polymer micelles with aspect ratios ranging from 1.0 (spherical) to 10.8 (cylindrical) and closely matched interfacial properties. Notably, our findings emphasize that cylindrical micelles with an aspect ratio of 2.4 are the least susceptible to macrophage uptake compared with both their longer counterparts and spherical micelles. This reduced uptake of the short cylindrical micelles results in a 3.3-fold increase in blood circulation time compared with their spherical counterparts. Controlling the aspect ratio of nanoparticles is crucial for improving drug delivery efficacy through better nanoparticle design.


Assuntos
Macrófagos , Micelas , Polímeros , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Animais , Polímeros/química , Camundongos , Portadores de Fármacos/química , Nanopartículas/química , Células RAW 264.7 , Tamanho da Partícula , Sistemas de Liberação de Medicamentos , Propriedades de Superfície
7.
Nano Lett ; 24(7): 2165-2174, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38329906

RESUMO

Magnetic nanoarrays promise to enable new energy-efficient computations based on spintronics or magnonics. In this work, we present a block copolymer-assisted strategy for fabricating ordered magnetic nanostructures on silicon and permalloy substrates. Block copolymer micelle-like structures were used as a template in which polyoxometalate (POM) clusters could assemble in an opal-like structure. A combination of microscopy and scattering techniques was used to confirm the structural and organizational features of the fabricated materials. The magnetic properties of these materials were investigated by polarized neutron reflectometry, nuclear magnetic resonance, and magnetometry measurements. The data show that a magnetic structural design was achieved and that a thin layer of patterned POMs strongly influenced an underlying permalloy layer. This work demonstrates that the bottom-up pathway is a potentially viable method for patterning magnetic substrates on a sub-100 nm scale, toward the magnetic nanostructures needed for spintronic or magnonic crystal devices.

8.
Small ; 20(5): e2304746, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37726236

RESUMO

Highly anisotropic-shaped particles with well-ordered internal nanostructures have received significant attention due to their unique shape-dependent photonic, rheological, and electronic properties and packing structures. In this work, nanosheet particles with cylindrical block copolymer (BCP) arrays are achieved by utilizing collapsed emulsions as a scaffold for BCP self-assembly. Highly elongated structures with large surface areas are formed by employing crystallizable surfactants that significantly reduce the interfacial tension of BCP emulsions. Subsequently, the stabilized elongated emulsion structures lead to the formation of BCP nanosheets. Specifically, when polystyrene-block-polydimethylsiloxane (PS-b-PDMS) and 1-octadecanol (C18-OH) are co-assembled within an emulsion, C18-OH penetrates the surfactant layer at the emulsion interface, lowering the interfacial tension (i.e., below 1 mN m-1 ) and causing emulsion deformation. In addition, C18-OH crystallization allows for kinetic arrest of the collapsed emulsion shape during solvent evaporation. Consequently, PS-b-PDMS BCPs self-assemble into defect-free structures within nanosheet particles, exhibiting an exceptionally high aspect ratio of over 50. The particle formation mechanism is further investigated by controlling the alkyl chain length of the fatty alcohol. Finally, the coating behavior of nanosheet particles is investigated, revealing that the deposition pattern on a substrate is strongly influenced by the particle's shape anisotropy, thus highlighting their potential for advanced coating applications.

9.
Small ; : e2310202, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822711

RESUMO

Charged polymersomes are attractive for advanced material applications due to their versatile encapsulation capabilities and charge-induced functionality. Although desirable, the pH-sensitivity of charged block copolymers adds complexity to its self-assembly process, making it challenging to produce charged polymersomes in a reliable manner. In this work, a flow approach to control and strike a delicate balance between solvent composition and pH for self-assembly is used. This allows for the identification of a phase window to reliably produce of charged polymersomes. The utility of this approach to streamline downstream processes, such as morphological transformation or in-line purification is further demonstrated. As proof-of-concept, it is shown that the processed polymersomes can be used for surface modifications facilitated by charge complexation.

10.
Small ; 20(23): e2309162, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38152973

RESUMO

Polymeric solid electrolytes have attracted tremendous interest in high-safety and high-energy capacity lithium-sulfur (Li─S) batteries. There is, however, still a dilemma to concurrently attain high Li-ion conductivity and high mechanical strength that effectively suppress the Li-dendrite growth. Accordingly, a rapidly Li-ion conducting solid electrolyte is prepared by grafting pyrrolidinium cation (PYR+)-functionalized poly(ethylene glycol) onto the poly(arylene ether sulfone) backbone (PAES-g-2PEGPYR). The PYR+ groups effectively immobilize anions of Li-salts in Li-conductive PEGPYR domains phase-separated from PAES matrix to enhance the single-ion conduction. The tailored PAES-g-2PEGPYR membrane shows a high Li-ion transference number of 0.601 and superior ionic conductivity of 1.38 mS cm-1 in the flexible solid state with the tensile strength of 1.0 MPa and Young's modulus of 1.5 MPa. Moreover, this PAES-g-2PEGPYR membrane exhibits a high oxidation potential (5.5 V) and high thermal stability up to 200 (C. The Li/PAES-g-2PEGPYR/Li cell stably operates for 1000 h without any short circuit, and the rechargeable Li/PAES-g-2PEGPYR/S cell discharges a capacity of 1004.7 mAh g-1 at C/5 with the excellent rate capability and the prominent cycling performance of 95.3% retention after 200 cycles.

11.
Small ; : e2401129, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837298

RESUMO

Synthesis of polymeric nanoparticles of controlled non-spherical morphology is of profound interest for a wide variety of potential applications. Self-assembly of amphiphilic diblock copolymers is an attractive bottom-up approach to prepare such nanoparticles. In the present work, RAFT polymerization is employed to synthesize a variety of poly(N,N-dimethylacrylamide)-b-poly[butyl acrylate-stat-GCB] copolymers, where GCB represents vinyl monomer containing triazine based Janus guanine-cytosine nucleobase motifs featuring multiple hydrogen bonding arrays. Hydrogen bonding between the hydrophobic blocks exert significant influence on the morphology of the resulting nanoparticles self-assembled in water. The Janus feature of the GCB moieties makes it possible to use a single polymer type in self-assembly, unlike previous work exploiting, e.g., thymine-containing polymer and adenine-containing polymer. Moreover, the strength of the hydrogen bonding interactions enables use of a low molar fraction of GCB units, thereby rendering it possible to use the present approach for copolymers based on common vinyl monomers for the development of advanced nanomaterials.

12.
Small ; 20(24): e2311800, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38164806

RESUMO

Alkali metal-sulfur batteries (particularly, lithium/sodium- sulfur (Li/Na-S)) have attracted much attention because of their high energy density, the natural abundance of sulfur, and environmental friendliness. However, Li/Na-S batteries still face big challenges, such as limited cycle life, poor conductivity, large volume changes, and the "shuttle effect" caused by the high solubility of Li/Na-polysulfides. Herein, novel organosulfur-containing materials, i.e., bis(4-hydroxy-2,2,6,6-tetramethylpiperidin-1-yl)disulfide (BiTEMPS-OH) and 2,4-thiophene/arene copolymer (TAC) are proposed as cathode materials for Li and Na batteries. BiTEMPS-OH shows an initial discharge/charge capacity of 353/192 mAh g-1 and a capacity of 62 mAh g-1 after 200 cycles at 100 mA g-1 in ether-based Li-ion electrolyte. Meanwhile, TAC has an initial discharge/charge capacity of 270/248 mAh g-1 and better cycling performance (106 mAh g-1 after 200 cycles) than BiTEMPS-OH in the same electrolyte. However, the rate capability of TAC is limited by the slow diffusion of Li-ions. Both materials show inferior electrochemical performances in Na battery cells compared to the Li analogs. X-ray powder diffraction reveals that BiTEMPS-OH loses its crystalline structure permanently upon cycling in Li battery cells. X-ray photoelectron spectroscopy demonstrates the cleavage and partially reversible formation of S-S bonds in BiTEMPS-OH and the formation/decomposition of thick solid electrolyte interphase on the electrode surface of TAC.

13.
Small ; : e2404306, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958070

RESUMO

Nanofluidic ionic diodes have attracted much attention due to their unique functions as unidirectional ion transportation ability and promising applications from molecular sensing, and energy harvesting to emerging neuromorphic devices. However, it remains a challenge to fabricate diode-like nanofluidic systems with ultrathin film thickness <100 nm. Herein the formation of ultrathin ionic diodes from hybrid nanoassemblies of nanoporous (NP) SiO2 nanofilms and polyelectrolyte layer-by-layer (LbL) multilayers is described. Ultrathin ionic diodes are prepared by integrating polyelectrolyte multilayers onto photo-oxidized NP SiO2 nanofilms obtained from silsesquioxane-containing block copolymer thin films as a template. The obtained ultrathin ionic diodes exhibit ion current rectification (ICR) properties with high ICR factor = ≈20 under low ionic strength and asymmetric pH conditions. It is concluded that this ICR behavior arises from effective ion accumulation and depletion at the interface of NP SiO2 nanofilms and LbL multilayers attributed to high ion selectivity by combining the experimental data and theoretical calculations using finite element methods. These results demonstrate that the hybrid nano assemblies of NP SiO2 nanofilms and polyelectrolyte LbL multilayers have potential applications for (bio)sensing materials and integrated ionic circuits for seamless connection of human-machine interfaces.

14.
Biopolymers ; : e23584, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695839

RESUMO

In recent years, cationic polymer vectors have been viewed as a promising method for delivering nucleic acids. With the advancement of synthetic polymer chemistry, we can control chemical structures and properties to enhance the efficacy of gene delivery. Herein, a facile, cost-effective, and scalable method was developed to synthesize PEGylated PDMAEMA polymers (PEO-PDMAEMA-PEO), where PEGylation could enable prolonged polyplexes circulation time in the blood stream. Two polymers of different molecular weights were synthesized, and polymer/eGFP polyplexes were prepared and characterized. The correlation between polymers' molecular weight and physicochemical properties (size and zeta potential) of polyplexes was investigated. Lipofectamine 2000, a commercial non-viral transfection reagent, was used as a standard control. PEO-PDMAEMA-PEO with higher molecular weight exhibited slightly better transfection efficiency than Lipofectamine 2000, and the cytotoxicity study proved that it could function as a safe gene vector. We believe that PEO-PDMAEMA-PEO could serve as a model to investigate more potential in the gene delivery area.

15.
Chemphyschem ; 25(12): e202400236, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38517663

RESUMO

In this paper we are addressing the co-solute-induced changes in the properties of an aqueous solution of a block copolymer. Due to the preferential interaction of different co-solute with different regions of the block copolymer, the changes were observed in both the physical properties and water dynamics. The modulation of both the physical properties and water dynamics was monitored using different spectroscopic techniques. Different co-solutes affect micellar properties of copolymer to a different extent signifying their interactions with different regions within the copolymer. The solvent relaxation dynamics were also modulated with the additions of different co-solutes. The change in free-energy (ΔGbf) and rate constant for bound to free water interconversion (kbf) in a copolymeric micelle was calculated which gets affected by the addition of co-solutes. The calculated kbf suggests that betaine, sarcosine, TMAO, and GnHCl favor the ordering of water molecules around the micelle and are excluded from the micellar surface whereas, urea favors the formation of free-water molecules rather than the structurally ordered bound water molecules around the micelle by accumulating at the micellar surface. Among the added methylamines trimethylamine N-oxide affected the water dynamics and its kinetics most profoundly. The protective property of GnHCl was revealed.

16.
Anal Bioanal Chem ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902347

RESUMO

Recently, open tubular capillary electrochromatography (OT-CEC) has captured considerable interest; its efficient separation capability hinges on the interactions between analytes and polymer coatings. However, in situ growth of stimuli-responsive polymers as coatings has been rarely studied and is crucial for expanding the OT-CEC technique and its application. Herein, following poly(styrene-maleicanhydride) (PSM) chemically bonded onto the inner surface of the capillary, a dual pH/temperature stimuli-responsive block copolymer, P(SMN-COOH), was prepared by in situ polymerizing poly(N-isopropylacrylamide) carboxylic acid terminated [P(N-COOH)] in PSM. An OT-CEC protocol was first explored using the coated capillary for epimedins separation. As a proof of concept, the developed OT-CEC system facilitated hydrogen bonding and tuning the hydrophilic/hydrophobic interactions between the test analytes and the P(SMN-COOH) coating by varying buffer pH and environmental temperature. Four epimedins with similar chemical structures were baseline separated under 40 °C at pH 10.0, exhibiting dramatical improvement in separation efficiency in comparison to its performance under 25 °C at pH 4.0. In addition, the coated capillary showed good repeatability and reusability with relative standard deviations for migration time and peak area between 0.7 and 1.7% and between 2.9 and 4.6%, respectively, and no significant changes after six runs. This work introduces a paradigm for efficient OT-CEC separation of herbal medicines through adjusting the interactions between analytes and smart polymer coatings, addressing polymer coating design and OT-CEC challenges.

17.
Macromol Rapid Commun ; : e2400399, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867361

RESUMO

A novel polycyclic naphthoxazine resin (NSA-thiq) is synthesized via N, O-acetal forming reaction between o-hydroxyl naphthaldehyde and 1,2,3,4-tetrahydroisoquinoline. The chemical structure of the monomer is investigated and confirmed by 1H and 13C NMR, Fourier-transform infrared (FT-IR) spectroscopy, and high-resolution mass spectrometry. Besides, the ring-opening polymerization behavior similar to ordinary benzoxazine resins is observed by differential scanning calorimetry (DSC) and in situ FT-IR analyses, leading to the formation of the phenolic cross-linked network. Notably, DSC thermograms indicate that the newly obtained polycyclic naphthoxazine resin exhibits much lower polymerization temperatures compared to many other reported benzoxazine or naphthoxazine resins. Moreover, the corresponding polybenzoxazine (poly(NSA-thiq)) shows comparable thermal stability in comparison with thermosets derived from monobenzoxazine resins. As a consequence of these unique performances, NSA-thiq is applied as a property modifier for a commercialized benzoxazine resin (BA-a). The glass transition temperature of copolymeric thermosets is enhanced without sacrificing too much thermal stability and heat resistance. Here, another series of naphthoxazine thermosetting resin is explored, which can provide more examples for constructing composites based on thermoset polymers.

18.
Macromol Rapid Commun ; 45(7): e2300666, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38134449

RESUMO

Copolymerization provides an effective approach to tune the photophysical properties of non-conventional luminescent polymers (NCLPs). In this study, the controlling of intrinsic emissions of polyacrylonitrile (PAN) copolymers is revealed by a delicate difference of secondary monomers. The introduction of methacrylate comonomers can induce a 70-nm red-shifting in the PL emission of copolymers compared with that of acrylate-containing copolymers. The mechanism of such "copolymerization induced red-shifting" in PAN copolymers is investigated. It is demonstrated that the presence of the α-methyl group in the copolymers can enhance the chain rigidity and through-space conjugation (TSC) of C≡N groups, resulting in the red-shifting of emission.


Assuntos
Acrilonitrila , Luminescência , Polímeros , Metacrilatos , Polimerização
19.
Macromol Rapid Commun ; 45(8): e2300696, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38160322

RESUMO

Controlling the internal structure of block copolymer (BCP) particles has a significant influence on its functionalities. Here, a structure-controlling method is proposed to regulate the internal structure of BCP Janus colloidal particles using different surfactants. Different microphase separation processes take place in two connected halves of the Janus particles. An order-order transition between gyroid and lamellar phases is observed in polymeric colloids. The epitaxial growth during the structural transformation from gyroid to lamellar phase undergoes a two-layered rearrangement to accommodate the interdomain spacing mismatch between these two phases. This self-assembly behavior can be ascribed to the preferential wetting of BCP chains at the interface, which can change the chain conformation of different blocks. The Janus colloidal particles can further experience a reversible phase transition by restructuring the polymer particles under solvent vapor. It is anticipated that the new phase behavior found in Janus particles can not only enrich the self-assembly study of BCPs but also provide opportunities for various applications based on Janus particles with ordered structures.


Assuntos
Coloides , Polímeros , Coloides/química , Polímeros/química , Tamanho da Partícula , Propriedades de Superfície , Tensoativos/química , Transição de Fase , Estrutura Molecular
20.
Macromol Rapid Commun ; : e2400097, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499007

RESUMO

Smart nanoassemblies degradable through the cleavage of acid-labile linkages have attracted significant attention because of their biological relevance found in tumor tissues. Despite their high potential to achieve controlled/enhanced drug release, a systematic understanding of structural factors that affect their pH sensitivity remains challenging, particulary in the consruction of effective acid-degradable shell-sheddable nanoassemblies. Herein, the authors report the synthesis and acid-responsive degradation through acid-catalyzed hydrolysis of three acetal and ketal diols and identify benzaldehyde acetal (BzAA) exhibiting optimal hydrolysis profiles in targeted pH ranges to be a suitable candidate for junction acid-labile linkage. The authors explore the synthesis and aqueous micellization of well-defined poly(ethylene glycol)-based block copolymer bearing BzAA linkage covalently attached to a polymethacrylate block for the formation of colloidally-stable nanoassemblies with BzAA groups at core/corona interfaces. Promisingly, the investigation on acid-catalyzed hydrolysis and disassembly shows that the formed nanoassemblies meet the criteria for acid-degradable shell-sheddable nanoassemblies: slow degradation at tumoral pH = 6.5 and rapid disassembly at endo/lysosomal pH = 5.0, while colloidal stability at physiological pH = 7.4. This work guides the design principle of acid-degradable shell-sheddable nanoassemblies bearing BzAA at interfaces, thus offering the promise to address the PEG dilemma and improve endocytosis in tumor-targeting drug delivery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA