Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(35): e2302800120, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37607225

RESUMO

The adiabatic elastocaloric effect measures the temperature change of a given system with strain and provides a thermodynamic probe of the entropic landscape in the temperature-strain space. Here, we demonstrate that the DC bias strain-dependence of AC elastocaloric effect allows decomposition of the latter into symmetric (rotation-symmetry-preserving) and antisymmetric (rotation-symmetry-breaking) strain channels, using a tetragonal [Formula: see text]-electron intermetallic DyB[Formula: see text]C[Formula: see text]-whose antiferroquadrupolar order breaks local fourfold rotational symmetries while globally remaining tetragonal-as a showcase example. We capture the strain evolution of its quadrupolar and magnetic phase transitions using both singularities in the elastocaloric coefficient and its jumps at the transitions, and the latter we show follows a modified Ehrenfest relation. We find that antisymmetric strain couples to the underlying order parameter in a biquadratic (linear-quadratic) manner in the antiferroquadrupolar (canted antiferromagnetic) phase, which are attributed to a preserved (broken) global tetragonal symmetry, respectively. The broken tetragonal symmetry in the magnetic phase is further evidenced by elastocaloric strain-hysteresis and optical birefringence. Additionally, within the staggered quadrupolar order, the observed elastocaloric response reflects a quadratic increase of entropy with antisymmetric strain, analogous to the role magnetic field plays for Ising antiferromagnetic orders by promoting pseudospin flips. Our results demonstrate AC elastocaloric effect as a compact and incisive thermodynamic probe into the coupling between electronic degrees of freedom and strain in free energy, which holds the potential for investigating and understanding the symmetry of a wide variety of ordered phases in broader classes of quantum materials.

2.
Proc Natl Acad Sci U S A ; 119(49): e2212730119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36459647

RESUMO

In BaNiS2, a Dirac nodal line band structure exists within a two-dimensional Ni square lattice system, in which significant electronic correlation effects are anticipated. Using scanning tunneling microscopy (STM), we discover signs of correlated-electron behavior, namely electronic nematicity appearing as a pair of C2-symmetry striped patterns in the local density-of-states at ∼60 meV above the Fermi energy. In observations of quasiparticle interference, as well as identifying scattering between Dirac cones, we find that the striped patterns in real space stem from a lifting of degeneracy among electron pockets at the Brillouin zone boundary. We infer a momentum-dependent energy shift with d-form factor, which we model numerically within a density wave (DW) equation framework that considers spin-fluctuation-driven nematicity. This suggests an unusual mechanism driving the nematic instability, stemming from only a small perturbation to the Fermi surface, in a system with very low density of states at the Fermi energy. The Dirac points lie at nodes of the d-form factor and are almost unaffected by it. These results highlight BaNiS2 as a unique material in which Dirac electrons and symmetry-breaking electronic correlations coexist.


Assuntos
Eletrônica , Elétrons , Microscopia de Tunelamento , Movimento (Física) , Células Fotorreceptoras Retinianas Cones
3.
Nano Lett ; 23(22): 10480-10489, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37955307

RESUMO

Nonequilibrium quantum transport is of central importance in nanotechnology. Its description requires the understanding of strong electronic correlations that couple atomic-scale phenomena to the nanoscale. So far, research in correlated transport has focused predominantly on few-channel transport, precluding the investigation of cross-scale effects. Recent theoretical advances enable the solution of models that capture the interplay between quantum correlations and confinement beyond a few channels. This problem is the focus of this study. We consider an atomic impurity embedded in a metallic nanosheet spanning two leads, showing that transport is significantly altered by tuning only the phase of a single local hopping parameter. Furthermore─depending on this phase─correlations reshape the electronic flow throughout the sheet, either funneling it through the impurity or scattering it away from a much larger region. This demonstrates the potential for quantum correlations to bridge length scales in the design of nanoelectronic devices and sensors.

4.
Rep Prog Phys ; 86(4)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36821858

RESUMO

We present an experimental and theoretical study which compares the phonon anomalies and the electronic gap features in the infrared response of the weakly coupled two-leg-ladders in Sr14-xCaxCu24O41(SCCO) with those of the underdoped high-Tcsuperconductor YBa2Cu3O6+x(YBCO) and thereby reveals some surprising analogies. Specifically, we present a phenomenological model that describes the anomalous doping- and temperature-dependence of some of the phonon features in thea-axis response (field along the rungs of the ladders) of SCCO. It assumes that the phonons are coupled to charge oscillations within the ladders. Their changes with decreasing temperature reveal the formation of a crystal (density wave) of hole pairs that are oriented along the rungs. We also discuss the analogy to a similar model that was previously used to explain the phonon anomalies and an electronic plasma mode in thec-axis response (field perpendicular to the CuO2planes) of YBCO. We further confirm that an insulator-like pseudogap develops in thea-axis conductivity of SCCO which closely resembles that in thec-axis conductivity of YBCO. Most surprisingly, we find that thec-axis conductivity (field along the legs of the ladders) of SCCO is strikingly similar to the in-plane one (field parallel to the CuO2planes) of YBCO. Notably, in both cases a dip feature develops in the normal state spectra that is connected with a spectral weight shift toward low frequencies and can thus be associated with precursor superconducting pairing correlations that are lacking macroscopic phase coherence. This SCCO-YBCO analogy indicates that collective degrees of freedom contribute to the low-energy response of underdoped highTccuprates and it even suggests that the charges in the CuO2planes tend to segregate forming quasi-one-dimensional structures similar to the two-leg ladders, as predicted for the stripe-scenario or certain intertwinned states.

5.
Proc Natl Acad Sci U S A ; 117(48): 30220-30227, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33203673

RESUMO

Using inelastic X-ray scattering beyond the dipole limit and hard X-ray photoelectron spectroscopy we establish the dual nature of the U [Formula: see text] electrons in U[Formula: see text] (M = Pd, Ni, Ru, Fe), regardless of their degree of delocalization. We have observed that the compounds have in common a local atomic-like state that is well described by the U [Formula: see text] configuration with the [Formula: see text] and [Formula: see text] quasi-doublet symmetry. The amount of the U 5[Formula: see text] configuration, however, varies considerably across the U[Formula: see text] series, indicating an increase of U 5f itineracy in going from M = Pd to Ni to Ru and to the Fe compound. The identified electronic states explain the formation of the very large ordered magnetic moments in [Formula: see text] and [Formula: see text], the availability of orbital degrees of freedom needed for the hidden order in [Formula: see text] to occur, as well as the appearance of Pauli paramagnetism in [Formula: see text] A unified and systematic picture of the U[Formula: see text] compounds may now be drawn, thereby providing suggestions for additional experiments to induce hidden order and/or superconductivity in U compounds with the tetragonal body-centered [Formula: see text] structure.

6.
J Synchrotron Radiat ; 26(Pt 5): 1725-1732, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490164

RESUMO

Resonant inelastic X-ray scattering (RIXS) is an extremely valuable tool for the study of elementary, including magnetic, excitations in matter. The latest developments of this technique have mostly been aimed at improving the energy resolution and performing polarization analysis of the scattered radiation, with a great impact on the interpretation and applicability of RIXS. Instead, this article focuses on the sample environment and presents a setup for high-pressure low-temperature RIXS measurements of low-energy excitations. The feasibility of these experiments is proved by probing the magnetic excitations of the bilayer iridate Sr3Ir2O7 at pressures up to 12 GPa.

7.
Proc Natl Acad Sci U S A ; 113(49): 13989-13994, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27872287

RESUMO

The second-order phase transition into a hidden order phase in URu2Si2 goes along with an order parameter that is still a mystery, despite 30 years of research. However, it is understood that the symmetry of the order parameter must be related to the symmetry of the low-lying local electronic [Formula: see text]-states. Here, we present results of a spectroscopic technique, namely core-level nonresonant inelastic X-ray scattering (NIXS). This method allows for the measurement of local high-multipole excitations and is bulk-sensitive. The observed anisotropy of the scattering function unambiguously shows that the 5[Formula: see text] ground-state wave function is composed mainly of the [Formula: see text] with majority [Formula: see text] = [Formula: see text] + [Formula: see text] and/or [Formula: see text] singlet states. The incomplete dichroism indicates the possibility that quantum states of other irreducible representation are mixed into the ground state.

8.
Proc Natl Acad Sci U S A ; 112(31): 9568-72, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26199413

RESUMO

The normal state in the hole underdoped copper oxide superconductors has proven to be a source of mystery for decades. The measurement of a small Fermi surface by quantum oscillations on suppression of superconductivity by high applied magnetic fields, together with complementary spectroscopic measurements in the hole underdoped copper oxide superconductors, point to a nodal electron pocket from charge order in YBa2Cu3(6+δ). Here, we report quantum oscillation measurements in the closely related stoichiometric material YBa2Cu4O8, which reveals similar Fermi surface properties to YBa2Cu3(6+δ), despite the nonobservation of charge order signatures in the same spectroscopic techniques, such as X-ray diffraction, that revealed signatures of charge order in YBa2Cu3(6+δ). Fermi surface reconstruction in YBa2Cu4O8 is suggested to occur from magnetic field enhancement of charge order that is rendered fragile in zero magnetic fields because of its potential unconventional nature and/or its occurrence as a subsidiary to more robust underlying electronic correlations.

9.
J Synchrotron Radiat ; 23(Pt 3): 735-42, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27140153

RESUMO

An angle-resolved linearly polarized hard X-ray photoemission spectroscopy (HAXPES) system has been developed to study the ground-state symmetry of strongly correlated materials. The linear polarization of the incoming X-ray beam is switched by a transmission-type phase retarder composed of two diamond (100) crystals. The best value of the degree of linear polarization was found to be -0.96, containing a vertical polarization component of 98%. A newly developed low-temperature two-axis manipulator enables easy polar and azimuthal rotations to select the detection direction of photoelectrons. The lowest temperature achieved was 9 K, offering the chance to access the ground state even for strongly correlated electron systems in cubic symmetry. A co-axial sample monitoring system with long-working-distance microscope enables the same region on the sample surface to be measured before and after rotation. Combining this sample monitoring system with a micro-focused X-ray beam by means of an ellipsoidal Kirkpatrick-Baez mirror (25 µm × 25 µm FWHM), polarized valence-band HAXPES has been performed on NiO for voltage application as resistive random access memory to demonstrate the micro-positioning technique and polarization switching.

10.
J Phys Condens Matter ; 36(39)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38914109

RESUMO

We perform variational Monte Carlo simulations of the single-band Hubbard model on the square lattice with both nearest (t) and next-nearest (t') neighbor hoppings. Our work investigates the consequences of increasing hole doping on the instauration of stripes and the behavior of the superconducting order parameter, with a discussion on how the two phenomena affect each other. We consider two different values of the next-nearest neighbor hopping parameter, that are appropriate for describing cuprate superconductors. We observe that stripes are the optimal state in a wide doping range; the stripe wavelength reduces at increasing doping, until stripes melt into a uniform state for large values of doping. Superconducting pair-pair correlations, indicating the presence of superconductivity, are always suppressed in the presence of stripes. Our results suggest that the phase diagram for the single-band Hubbard model is dominated by stripes, with superconductivity being possible only in a narrow doping range between striped states and a nonsuperconducting metal.

11.
J Phys Condens Matter ; 36(43)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39029502

RESUMO

Motivated by the recent developments in terahertz spectroscopy using pump-probe setups to study correlated electronic materials, we review the field theoretical formalism to compute finite frequency nonlinear electro-optical responses in centrosymmetric systems starting from basic time dependent perturbation theory. We express the nonlinear current kernel as a sum of several causal response functions. These causal functions cannot be evaluated using perturbative field theory methods, since they are not contour ordered. Consequently, we associate each response function with a corresponding imaginary time ordered current correlation function, since the latter can be factorized using Wick's theorem. The mapping between the response functions and the correlation functions, suitably analytically continued to real frequencies, is proven exactly. We derive constraints satisfied by the nonlinear current kernel and we prove a generalizedf-sum rule for the nonlinear conductivity, all of which are consequences of particle number conservation. The constraints guarantee that the nonlinear static responses are free from spurious divergences. We apply the theory to compute the gauge invariant nonlinear conductivity of a system of noninteracting electrons in the presence of weak disorder. As special cases of this generalized nonlinear response, we discuss its third harmonic and its instantaneous terahertz Kerr signals. The formalism can be used to compute the nonlinear conductivity in symmetry broken phases of electronic systems such as superconductors, density waves and nematic states.

12.
J Phys Condens Matter ; 35(11)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36599167

RESUMO

We investigate the electronic structure of highly conducting perovskite SrMoO3using valence band photoemission spectroscopy and electronic structure calculations. Large intensity corresponding to coherent feature close to Fermi level is captured by density functional theory (DFT) calculation. An additional satellite at ∼3 eV binding energy remains absent in DFT, hybrid functional (DFT-hybrid) and dynamical mean field theory (DFT + DMFT) calculations. Mo 4dspectra obtained with different surface sensitive photoemission spectroscopy suggest different surface and bulk electronic structures. DFT + DMFT spectral function is in excellent agreement with the coherent feature in the bulk Mo 4dspectra, revealing moderate electron correlation strength. A large plasmon satellite and signature of strong electron correlation are observed in the surface spectra, while the bulk spectra exhibits aweakplasmon satellite.

13.
J Phys Condens Matter ; 35(26)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36972616

RESUMO

It remains a great challenge in condensed matter physics to develop a method to treat strongly correlated many-body systems with balanced accuracy and efficiency. We introduce an extended Gutzwiller (EG) method incorporating a manifold technique, which builds an effective manifold of the many-body Hilbert space, to describe the ground-state (GS) and excited-state (ES) properties of strongly correlated electrons. We systematically apply an EG projector onto the GS and ES of a non-interacting system. Diagonalization of the true Hamiltonian within the manifold formed by the resulting EG wavefunctions gives the approximate GS and ES of the correlated system. To validate this technique, we implement it on even-numbered fermionic Hubbard rings at half-filling with periodic boundary conditions, and compare the results with the exact diagonalization (ED) method. The EG method is capable of generating high-quality GS and low-lying ES wavefunctions, as evidenced by the high overlaps of wavefunctions between the EG and ED methods. Favorable comparisons are also achieved for other quantities including the total energy, the double occupancy, the total spin and the staggered magnetization. With the capability of accessing the ESs, the EG method can capture the essential features of the one-electron removal spectral function that contains contributions from states deep in the excited spectrum. Finally, we provide an outlook on the application of this method on large extended systems.

14.
Adv Mater ; 35(2): e2207436, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36383029

RESUMO

Technologically relevant strongly correlated phenomena such as colossal magnetoresistance (CMR) and metal-insulator transitions (MIT) exhibited by perovskite manganites are driven and enhanced by the coexistence of multiple competing magneto-electronic phases. Such magneto-electronic inhomogeneity is governed by the intrinsic lattice-charge-spin-orbital correlations, which, in turn, are conventionally tailored in manganites via chemical substitution, charge doping, or strain engineering. Alternately, the recently discovered high entropy oxides (HEOs), owing to the presence of multiple-principal cations on a given sub-lattice, exhibit indications of an inherent magneto-electronic phase separation encapsulated in a single crystallographic phase. Here, the high entropy (HE) concept is combined with standard property control by hole doping in a series of single-phase orthorhombic HE-manganites (HE-Mn), (Gd0.25 La0.25 Nd0.25 Sm0.25 )1- x Srx MnO3 (x = 0-0.5). High-resolution transmission microscopy reveals hitherto-unknown lattice imperfections in HEOs: twins, stacking faults, and missing planes. Magnetometry and electrical measurements infer three distinct ground states-insulating antiferromagnetic, unpercolated metallic ferromagnetic, and long-range metallic ferromagnetic-coexisting or/and competing as a result of hole doping and multi-cation complexity. Consequently, CMR ≈1550% stemming from an MIT is observed in polycrystalline pellets, matching the best-known values for bulk conventional manganites. Hence, this initial case study highlights the potential for a synergetic development of strongly correlated oxides offered by the high entropy design approach.

15.
J Phys Condens Matter ; 35(31)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37161911

RESUMO

Kondo coupling has been extensively investigated in several Ce-based systems. However, the search for materials showing the interplay between the Kondo effect, spin-orbit interaction, and crystal-field effect along with the presence of local charge susceptibility; remains a challenge for the condensed matter community. Actually, in Ce-based systems, the strong coupling of the conduction electrons to the local magnetic moments usually hides these properties. Here, we present a detailed investigation of Ce0.6La0.4Ge through a combined density functional theory and dynamic mean-field theory study. Our investigations give evidence of the significant charge susceptibility and the multiple differentf-chybridization configurations. The weakening of the magnetization owing to the dilution of the Ce-site is the main cause for the appearance of such properties, which is believed to occur due to the presence of the relevant local moment andf-chybridization over the competition with the on-site Coulomb interaction.

16.
J Phys Condens Matter ; 36(6)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37875139

RESUMO

We briefly review the status quo of research on the putative superconductor Pb9Cu(PO4)6O also known as LK-99. Further, we provideab initioderived tight-binding parameters for a two- and five-band model, and solve these in dynamical-mean-field theory. The interaction-to-bandwidth ratio makes LK-99 a Mott or charge transfer insulator. Electron or hole doping (which is different from substituting Pb by Cu and thus differs from LK-99) is required to make it metallic and potentially superconducting.

17.
Adv Mater ; 35(15): e2208833, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36739615

RESUMO

Interfaces between dissimilar correlated oxides can offer devices with versatile functionalities, and great efforts have been made to manipulate interfacial electronic phases. However, realizing such phases is often hampered by the inability to directly access the electronic structure information; most correlated interfacial phenomena appear within a few atomic layers from the interface. Here, atomic-scale epitaxy and photoemission spectroscopy are utilized to realize the interface control of correlated electronic phases in atomic-scale ruthenate-titanate heterostructures. While bulk SrRuO3 is a ferromagnetic metal, the heterointerfaces exclusively generate three distinct correlated phases in the single-atomic-layer limit. The theoretical analysis reveals that atomic-scale structural proximity effects yield Fermi liquid, Hund metal, and Mott insulator phases in the quantum-confined SrRuO3 . These results highlight the extensive interfacial tunability of electronic phases, hitherto hidden in the atomically thin correlated heterostructure. Moreover, this experimental platform suggests a way to control interfacial electronic phases of various correlated materials.

18.
J Phys Condens Matter ; 34(49)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36220012

RESUMO

We introduce a rotationally invariant approach combined with the Gutzwiller conjugate gradient minimization method to study correlated electron systems. In the approach, the Gutzwiller projector is parametrized based on the number of electrons occupying the onsite orbitals instead of the onsite configurations. The approach efficiently groups the onsite orbitals according to their symmetry and greatly reduces the computational complexity, which yields a speedup of20∼50×in the minimal basis energy calculation of dimers. The computationally efficient approach promotes more accurate calculations beyond the minimal basis that is inapplicable in the original approach. A large-basis energy calculation of F2demonstrates favorable agreements with standard quantum-chemical calculations Bytautaset al(2007J. Chem. Phys.127164317).

19.
J Phys Condens Matter ; 34(24)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35290968

RESUMO

We review our recent work on the Gutzwiller conjugate gradient minimization method, anab initioapproach developed for correlated electron systems. The complete formalism has been outlined that allows for a systematic understanding of the method, followed by a discussion of benchmark studies of dimers, one- and two-dimensional single-band Hubbard models. In the end, we present some preliminary results of multi-band Hubbard models and large-basis calculations of F2to illustrate our efforts to further reduce the computational complexity.

20.
Adv Mater ; 33(32): e2100593, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34176160

RESUMO

In strongly correlated electron materials, the electronic, spin, and charge degrees of freedom are closely intertwined. This often leads to the stabilization of emergent orders that are highly sensitive to external physical stimuli promising opportunities for technological applications. In perovskite ruthenates, this sensitivity manifests in dramatic changes of the physical properties with subtle structural details of the RuO6 octahedra, stabilizing enigmatic correlated ground states, from a hotly debated superconducting state via electronic nematicity and metamagnetic quantum criticality to ferromagnetism. Here, it is demonstrated that the rotation of the RuO6 octahedra in the surface layer of Sr2 RuO4 generates new emergent orders not observed in the bulk material. Through atomic-scale spectroscopic characterization of the low-energy electronic states, four van Hove singularities are identified in the vicinity of the Fermi energy. The singularities can be directly linked to intertwined nematic and checkerboard charge order. Tuning of one of these van Hove singularities by magnetic field is demonstrated, suggesting that the surface layer undergoes a Lifshitz transition at a magnetic field of ≈32T. The results establish the surface layer of Sr2 RuO4 as an exciting 2D correlated electron system and highlight the opportunities for engineering the low-energy electronic states in these systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA