Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34848539

RESUMO

Double-network gels are a class of tough soft materials comprising two elastic networks with contrasting structures. The formation of a large internal damage zone ahead of the crack tip by the rupturing of the brittle network accounts for the large crack resistance of the materials. Understanding what determines the damage zone is the central question of the fracture mechanics of double-network gels. In this work, we found that at the onset of crack propagation, the size of necking zone, in which the brittle network breaks into fragments and the stretchable network is highly stretched, distinctly decreases with the increase of the solvent viscosity, resulting in a reduction in the fracture toughness of the material. This is in sharp contrast to the tensile behavior of the material that does not change with the solvent viscosity. This result suggests that the dynamics of stretchable network strands, triggered by the rupture of the brittle network, plays a role. To account for this solvent viscosity effect on the crack initiation, a delayed blunting mechanism regarding the polymer dynamics effect is proposed. The discovery on the role of the polymer dynamic adds an important missing piece to the fracture mechanism of this unique material.

2.
J Prosthodont ; 30(6): 490-499, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33009879

RESUMO

PURPOSE: Zirconia crowns often crack at the margin. This study determined the loads and the times at which cracks are initiated in high-translucency monolithic zirconia crowns with different margin designs. MATERIALS AND METHODS: A total of 90 crowns were fabricated from Zirconia blanks. The fabricated crowns had different margin thicknesses (light-chamfer, CL and heavy-chamfer, CH ) and collar heights (no-collar, NC ; low-collar, LC ; high-collar, HC ). They were grouped as CL NC , CL LC , CL HC , CH NC , CH LC , and CH HC (15 crowns/group). The crowns were seated on a metal model and loaded vertically through round end punch (Φ = 10 mm) at 0.2 mm/min crosshead speed until cracks began to be seen. Videos of the crack initiation were recorded at the rate of 50 frames/second. Load-initiated cracks and durability time were compared for significant differences using analysis of variance. RESULTS: The mean ± standard deviation values of load (N) and time (s) taken to initiate cracks were 3190 ±775, 212 ±47 for CL NC ; 2754 ±1109, 180 ±42 for CL LC ; 2887±832, 191±27 for CL HC ; 4082 ±896, 241 ±36 for CH NC ; 4180 ±1029, 220 ±28 for CH LC ; 4119 ±1124, 222 ±39 for CH HC . This indicates that the thickness of the margin has a significant influence on load-withstanding crack initiation capacity and durability time (p < 0.05). No significant impact of collar height was observed on either load-withstanding capacity or durability time (p > 0.05). No interaction was observed among these factors. CONCLUSION: Heavy chamfer margin provided a stronger zirconia crown than the light chamfer margin, but both of them were capable of withstanding crack-initiated load higher than the theoretical maximum masticatory force. The presence or absence of a collar did not have any impact on the crack initiation. Fabrication of zirconia crowns with either a heavy or light chamfer margin and with or without the presence of a collar should be generated by considering the relevant emergence profile.


Assuntos
Coroas , Planejamento de Prótese Dentária , Desenho Assistido por Computador , Porcelana Dentária , Análise do Estresse Dentário , Teste de Materiais , Zircônio
3.
Sensors (Basel) ; 20(24)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352961

RESUMO

The increasing number of bridges approaching their design life has prompted researchers and operators to develop innovative structural health monitoring (SHM) techniques. An acoustic emissions (AE) method is a passive SHM approach based on the detection of elastic waves in structural components generated by damages, such as the initiation and propagation of cracks in concrete and the failure of steel wires. In this paper, we discuss the effectiveness of AE techniques by analyzing records acquired during a load test on a full-size prestressed concrete bridge span. The bridge is a 1968 structure currently decommissioned but perfectly representative, by type, age, and deterioration state of similar bridges in operation on the Italian highway network. It underwent a sequence of loading and unloading cycles with a progressively increasing load up to failure. We analyzed the AE signals recorded during the load test and examined how far their features (number of hits, amplitude, signal strength, and peak frequency) allow us to detect, quantify, and classify damages. We conclude that AE can be successfully used in permanent monitoring to provide information on the cracking state and the maximum load withstood. They can also be used as a non-destructive technique to recognize whether a structural member is cracked. Finally, we noticed that AE allow classifying different types of damage, although further experiments are needed to establish and validate a robust classification procedure.

4.
Proc Natl Acad Sci U S A ; 110(49): 19725-30, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24255113

RESUMO

Metallic glasses (MGs) exhibit greater elastic limit and stronger resistance to plastic deformation than their crystalline metal counterparts. Their capacity to withstand plastic straining is further enhanced at submicrometer length scales. For a range of microelectromechanical applications, the resistance of MGs to damage and cracking from thermal and mechanical stress or strain cycling under partial or complete constraint is of considerable scientific and technological interest. However, to our knowledge, no real-time, high-resolution transmission electron microscopy observations are available of crystallization, damage, and failure from the controlled imposition of cyclic strains or displacements in any metallic glass. Here we present the results of a unique in situ study, inside a high-resolution transmission electron microscope, of glass-to-crystal formation and fatigue of an Al-based MG. We demonstrate that cyclic straining progressively leads to nanoscale surface roughening in the highly deformed region of the starter notch, causing crack nucleation and formation of nanocrystals. The growth of these nanograins during cyclic straining impedes subsequent crack growth by bridging the crack. In distinct contrast to this fatigue behavior, only distributed nucleation of smaller nanocrystals is observed with no surface roughening under monotonic deformation. We further show through molecular dynamics simulation that these findings can be rationalized by the accumulation of strain-induced nonaffine atomic rearrangements that effectively enhances diffusion through random walk during repeated strain cycling. The present results thus provide unique insights into fundamental mechanisms of fatigue of MGs that would help shape strategies for material design and engineering applications.


Assuntos
Vidro/química , Nanopartículas Metálicas/química , Estresse Mecânico , Teste de Materiais , Microscopia Eletrônica de Transmissão , Simulação de Dinâmica Molecular
5.
Philos Trans A Math Phys Eng Sci ; 373(2038)2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25713457

RESUMO

In this survey, the origin of fatigue crack initiation and damage evolution in different metallic materials is discussed with emphasis on the responsible microstructural mechanisms. After a historical introduction, the stages of cyclic deformation which precede the onset of fatigue damage are reviewed. Different types of cyclic slip irreversibilities in the bulk that eventually lead to the initiation of fatigue cracks are discussed. Examples of trans- and intercrystalline fatigue damage evolution in the low cycle, high cycle and ultrahigh cycle fatigue regimes in mono- and polycrystalline face-centred cubic and body-centred cubic metals and alloys and in different engineering materials are presented, and some microstructural models of fatigue crack initiation and early crack growth are discussed. The basic difficulties in defining the transition from the initiation to the growth of fatigue cracks are emphasized. In ultrahigh cycle fatigue at very low loading amplitudes, the initiation of fatigue cracks generally occupies a major fraction of fatigue life and is hence life controlling.

6.
Materials (Basel) ; 17(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612002

RESUMO

Solving the challenges facing the mining industry is crucial for shaping the global attitude towards clean energy technologies associated with critical minerals extracted from depth. One of these challenges is the well-known explosion-like fractures (rockbursts) or spalling failures associated with the initiation of internal cracks. To prevent such catastrophic failure, shotcrete, as a cement grout, is widely used in tunnel support applications. In areas where the tunnels are constructed within the limestone strata using tunnel boring machines (TBM), drilling, and/or blasting, millions of cubic meters of crushed limestone (CL) in powder form are extracted and landfilled as waste. Given the fact that natural sand consumption as a raw material in the construction industry exceeds previous records, recycling of such excavation material is now becoming increasingly needed. From this perspective, this study aims to utilize crushed limestone as a potentially sustainable alternative to natural sand in shotcrete applications in deep tunnels. Accordingly, several strength characterization and crack initiation determinations through various stress-strain-based models were carried out on cylindrical samples containing different proportions of crushed limestone. By increasing the crushed limestone content in the shotcrete mix, the crack initiation stress (as a measure of the in situ spalling strength) increased as well. The results suggest that the crushed limestone has good potential to replace the natural sand in the shotcrete mixture used in tunnel support applications.

7.
Materials (Basel) ; 17(18)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39336204

RESUMO

Advanced high-strength steels (AHSSs) with Zn coatings are commonly joined by the resistance spot welding (RSW) technique. However, Zn coatings could possibly cause the formation of liquid metal embrittlement (LME) cracks during the RSW process. The role of a Zn coating in the tensile-shear fatigue properties of a welding joint has not been systematically explored. In this study, the fatigue properties of tensile-shear RSW joints for bare and Zn-coated advanced high-strength steel (AHSS) specimens were comparatively studied. In particular, more severe LME cracks were triggered by employing a tilted welding electrode because much more stress was caused in the joint. LME cracks had clearly occurred in the Zn-coated steel RSW joints, as observed via optical microscopy. On the contrary, no LME cracks could be found in the RSW joints prepared with the bare steel sheets. The fatigue test results showed that the tensile-shear fatigue properties remained nearly unchanged, regardless of whether bare or Zn-coated steel was used for the RSW joints. Furthermore, Zn mapping adjacent to the crack initiation source was obtained by an electron probe micro-analyzer (EPMA), and it showed no segregation of the Zn element. Thus, the failure of the RSW joints with the Zn coating had not initiated from the LME cracks. It was concluded that the fatigue cracks were initiated by the stress concentration in the notch position between the two bonded steel sheets.

8.
Sci Rep ; 14(1): 15222, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956233

RESUMO

The critical value of rock failure is determined by irreversible deformation (inelastic deformation, damage, and other internal dissipation) processes and external conditions before rock failure. Nevertheless, a thorough explanation of the mechanism causing cracks in rock material has not yet been provided. The strain energy theory is applied in this work to assess the initiation of rock cracks and investigate the relationship between energy digestion and rock strength. Firstly, the uniaxial compression test was conducted on sandstone samples under quasi-static loading conditions and the results of energy evolution, non-linear cumulative digestion, and stored ultimate energy were obtained. Then, a novel algorithm for assessing the initiation of rock cracks has been put forth. The concept of energy digestion index (EDI), which is the ratio of digested energy over the external loading energy, has been developed to characterize the energy absorption capacity of rock material. The result shows a relationship between the maximum growth rate of energy digestion and the increasing rate of variable elasticity modulus and crack initiation. The mechanical characteristics and peak strength of the rock material are negatively correlated with the EDI. By monitoring the digested energy status, an evaluation of the residual strength is introduced based on the relationships, which will initiate further research into in-situ monitoring and failure prediction.

9.
Materials (Basel) ; 17(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38673225

RESUMO

There are some important advantages presented by metal specimens coated with WIP-C1 (Ni/CrC)-type materials. However, given the coating methods and the stress under dynamic loads, there are issues that need to be taken into account, particularly in terms of the behavior at the interface between the two materials. Using standardized cylindrical 1018 steel specimens uniformly coated with WIP-C1 (Ni/CrC) by cold spraying, this study investigated the fatigue behavior of the specimen as a whole, focusing on the interface areas of the two materials. The fatigue life diagram is given, to a large extent, by the behavior of the base material. As a result, in this work, we have focused not so much on the fatigue behavior of the assembly as on the integrity of the coating material and the defects, failures, etc., that may occur at the interface after a certain number of cycles. The applied load was cyclic fatigue through alternating-symmetric cycles. Scanning optical microscopy was used to observe plastic deformations and crack propagation during the breakage process. It was found that both the base material zone and the cover material zone presented good performance when the maximum stresses were at low values. A fatigue durability curve was also plotted, showing a conventional appearance for a metallic material, slightly influenced by the destruction of the base material interface. At higher maximum stress and, consequently, to large strains, a series of destructions at the interface of the two materials, of different types, were observed and will be highlighted in the paper.

10.
Materials (Basel) ; 17(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38541510

RESUMO

Thermally induced pores (TIPs) are generally the source of fatigue crack initiation in the powder metallurgy (PM) Ni-based FGH96 superalloy. The effect of TIPs on fatigue crack initiation on the surface of the FGH96 superalloy was detected using scanning electron microscopy (SEM). The cause of fatigue crack deflection was studied using electron backscatter diffraction (EBSD) analysis. The results indicated that there are two states of TIPs including isolated TIPs and clustered TIPs located at the grain boundary. The investigation of crack initiation and propagation around TIPs was conducted in detail through the comprehensive integration of experimental findings and computational results. For cracks initiated by isolated TIPs, the maximum equivalent size and the ratio of the vertical-parallel axis to the loading direction of the TIPs reveal a linear relationship, and both of them determine crack initiation. Regarding clustered TIPs, the constituent pores of the clustered TIPs will compete to initiate cracks based on the experimental results, and the largest pore will be more likely to initiate cracking. Moreover, the results showed that fatigue crack propagation can be hindered by hard-orientation grains and twins with a low Schmid factor (SF). Large-angle crack deflection due to twins with a low SF can significantly increase crack length and resistance to crack propagation.

11.
Materials (Basel) ; 17(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38930356

RESUMO

As the reliability and lifespan requirements of modern equipment continues to escalate, the problems with very high cycle fatigue (VHCF) has obtained increasingly widespread attention, becoming a hot topic in fatigue research. Titanium alloys, which are the most extensively used metal materials in the modern aerospace industry, are particularly prone to VHCF issues. The present study systematically reviewed and summarized the latest (since 2010) developments in VHCF research on titanium alloy, with special focus on the (i) experimental methods, (ii) macroscopic and microscopic characteristics of the fatigue fractures, and (iii) construction of fatigue fracture models. More specifically, the review addresses the technological approaches that were used, mechanisms of fatigue crack initiation, features of the S-N curves and Goodman diagrams, and impact of various factors (such as processing, temperature, and corrosion). In addition, it elucidates the damage mechanisms, evolution, and modeling of VHCF in titanium alloys, thereby improving the understanding of VHCF patterns in titanium alloys and highlighting the current challenges in VHCF research.

12.
Artigo em Inglês | MEDLINE | ID: mdl-39382654

RESUMO

Developing a high-energy-density cathode material (LiNi1-x-yCoxMnyO2, NCM) for lithium-ion batteries is crucial to the electric vehicle and energy storage industries. However, the continuous insertion/extraction of Li+ generates diffusion-induced stress, causing NCM particles to crack or even pulverize, leading to battery capacity loss and limiting its wider commercial application. Current experimental studies are primarily postmortem examinations, and it is difficult to capture the particle cracking evolution. Simulation studies frequently ignore or simplify anisotropic volume contraction, demonstrating an insufficient understanding of the cracking mechanism of NCM polycrystalline particles, and cracking prevention strategies still need improvement. Therefore, we develop an anisotropic polycrystalline fracture phase-field model (AP-FPFM) that focuses on the anisotropic volume contraction of primary particles and precisely generates grain boundary distribution, coupling with Li+ diffusion, mechanical stress, and particle cracking. We employ AP-FPFM to demonstrate the behavior and mechanism of NCM polycrystalline particle cracking and illustrate the necessity and importance of anisotropic volume contraction to understand particle cracking. Furthermore, we explore the effects of average primary particle size, secondary particle size, and core-shell structure modulation on crack initiation and propagation and propose strategies to inhibit or migrate NCM polycrystalline particle cracking. This work provides theoretical support for revealing the cracking mechanism of anisotropic polycrystalline NCM particles and supplying optimization strategies to suppress particle cracking and improve the mechanical stability.

13.
Int Endod J ; 46(8): 763-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23402216

RESUMO

AIM: To evaluate the potential effects of endodontic procedures (instrumentation and filling) on crack initiation and propagation in apical dentine. METHODOLOGY: Forty extracted single-rooted premolars with two canals were selected, 1.5 mm of the apex was ground perpendicular to the long axis of the tooth and the surface polished. The specimens were divided into 4 groups. The buccal canals of groups A, B and C were enlarged to size 40 with manual K-files. Group A was filled with gutta-percha using lateral condensation and vertical compaction without sealer. Group B was filled with the same method as group A except only lateral condensation was used. Group C was left unfilled, while group D was left unprepared and unfilled. Images of the resected surface were taken after resection (baseline), after canal preparation, after filling and after 4-week storage. The images were then inspected for cracks originating from the canal. RESULTS: A significant effect of preparation on crack initiation (P < 0.05) and no significant effect of filling (P > 0.05) or 4-week storage on crack initiation (P > 0.05) was found (logistic regression). Fisher's exact test revealed a significant effect of filling on crack propagation (P < 0.05) and no effect of 4-week storage on crack propagation (P > 0.05). CONCLUSIONS: Root canal procedures can potentially initiate and propagate cracks from within the root canal in the apical region.


Assuntos
Cavidade Pulpar/ultraestrutura , Dentina/ultraestrutura , Obturação do Canal Radicular/métodos , Preparo de Canal Radicular/métodos , Ápice Dentário/ultraestrutura , Corantes , Guta-Percha/uso terapêutico , Humanos , Azul de Metileno , Fibras Ópticas , Materiais Restauradores do Canal Radicular/uso terapêutico , Irrigantes do Canal Radicular/uso terapêutico , Obturação do Canal Radicular/instrumentação , Preparo de Canal Radicular/instrumentação , Hipoclorito de Sódio/uso terapêutico , Fatores de Tempo , Transiluminação/instrumentação
14.
Materials (Basel) ; 16(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37834686

RESUMO

The mechanical properties of shale are generally influenced by in situ geological conditions. However, the understanding of the effects of in situ geological conditions on the mechanical properties of shale is still immature. To address this problem, this paper provides insight into the elasticity and characteristic stress thresholds (i.e., the crack closure stress σcc, crack initiation stress σci, and crack damage stress σcd) of shales with differently oriented bedding planes under deep in situ geological conditions. To accurately determine the elastic parameters and crack closure and initiation thresholds, a new method-i.e., the bidirectional iterative approximation (BIA) method-which iteratively approaches the upper and lower limit stresses of the linear elastic stress-strain regime, was proposed. Several triaxial compression experiments were performed on Longmaxi shale samples under coupled in situ stress and temperature conditions reflecting depths of 2000 and 4000 m in the study area. The results showed that the peak deviatoric stress (σp) of shale samples with the same bedding plane orientation increases as depth increases from 2000 m to 4000 m. In addition, the elastic modulus of the shale studied is more influenced by bedding plane orientation than by burial depth. However, the Poisson's ratios of the studied shale samples are very similar, indicating that for the studied depth conditions, the Poisson's ratio is not influenced by the geological conditions and bedding plane orientation. For the shale samples with the two typical bedding plane orientations tested (i.e., perpendicular and parallel to the axial loading direction) under 2000 and 4000 m geological conditions, the ratio of crack closure stress to peak deviatoric stress (σcc/σp) ranges from 24.83% to 25.16%, and the ratio of crack initiation stress to peak deviatoric stress (σci/σp) ranges from 34.78% to 38.23%, indicating that the σcc/σp and σci/σp ratios do not change much, and are less affected by the bedding plane orientation and depth conditions studied. Furthermore, as the in situ depth increases from 2000 m to 4000 m, the increase in σcd is significantly greater than that of σcc and σci, indicating that σcd is more sensitive to changes in depth, and that the increase in depth has an obvious inhibitory effect on crack extension. The expected experimental results will provide the background for further constitutive modeling and numerical analysis of the shale gas reservoirs.

15.
Chemosphere ; 310: 136729, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36252900

RESUMO

Vacuum drying is an effective approach for sludge treatment and valorization. However, the vacuum drying of sludge has not been industrialized at present. The objective of this study was to elucidate the vacuum drying characteristics of static sludge and crack initiation mechanism. Our results indicate that crusting on the sludge surface under a high vacuum inhibited drying by reducing major cracks at sludge thicknesses of 13.6 and 10.2 mm. The inhibition effect weakened with decreasing sludge thickness. At 6.8 mm, the mean drying rate (VM) was the lowest at 0.08 MPa, while VM decreased with increasing vacuum degree at thicknesses of 13.6 and 10.2 mm. The decrease in drying rate could be attributed to rapid evaporation on the sludge surface under a high vacuum, leading to crusting, which inhibited crack initiation. VM was raised by 67.9-162.2% from 10.2 to 6.8 mm because the suction force of vacuum on water was much higher than the resistance to water diffusion of small isolation piles at 6.8 mm. Additionally, this study provided essential information to improve existing sludge treatment methods.


Assuntos
Dessecação , Esgotos , Vácuo , Dessecação/métodos , Água , Tecnologia
16.
ACS Appl Mater Interfaces ; 15(4): 6025-6034, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36688663

RESUMO

Reducing unfavorable ice accretion on surfaces exposed in cold environment requires effective passive anti-icing/deicing techniques. Icephobic surfaces are widely applied on various infrastructures due to their low ice adhesion strength and flexibility, whereas their poor mechanical durability, common liquid infusion, weak resistance to contamination, and low bonding strength to substrates are the major remaining challenges. According to the fracture mechanics of ice layer, initiating cracks at the ice-solid interfaces via the proper design of internal structures of icephobic materials is a promising way to icephobicity. Herein, a crack initiating icephobic surface with porous PDMS sponges sandwiched between a protective, dense PDMS layer and a textured metal microstructure was proposed and fabricated. The combination of high- and low- stiffness PDMS layers anchored by the structured metal surface give the sandwich-like structure excellent icephobicity with both high durability and low ice adhesion (5.3 kPa in the icing-deicing cycles). The porosity and the elastic modulus of the PDMS sponges and the periodicity of the metal surface structures can both be tailored to realize enhanced icephobicity. The sandwich-like icephobic surface remained insignificantly changed under solid particle impacting and the durability characterized via linear abrasion tests was elevated compared with PDMS coating on flat metal surfaces. Additionally, the trilayer icephobic surface possesses durability, low ice adhesion strength, and improved resistance to contamination and is applicable on various surfaces.

17.
Materials (Basel) ; 16(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38005072

RESUMO

Blast stress waves profoundly impact engineering structures, exciting and affecting the rupture process in brittle construction materials. A novel numerical model was introduced to investigate the initiation and propagation of cracks subjected to blast stress waves within the borehole-crack configuration. Twelve models were established with different crack lengths to simulate sandstone samples. The influence of crack length on crack initiation and propagation was investigated using those models. The linear equation of state was used to express the relationship between the pressure and density of the material. The major principal stress failure criterion was used to evaluate the failure of elements. A triangular pressure curve was adopted to produce the blast stress wave. The results indicated that the pre-crack length critically influenced the crack initiation and propagation mechanism by analyzing the stress history at the crack tip, crack propagation velocity, and distance. The inducement of a P-wave and S-wave is paramount in models with a short pre-crack. For long pre-crack models, Rayleigh waves significantly contribute to crack propagation.

18.
Materials (Basel) ; 16(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36837226

RESUMO

The 7075 aluminum alloy is a promising material for the aerospace industry due to its combination of light weight and high strength. This study proposed a method for predicting fatigue crack initiation of the 7075 aluminum alloy by crystal plasticity finite element analysis considering microstructures. In order to accurately predict the total fatigue life, it is necessary to calculate the number of cycles for fatigue crack initiation, small crack growth, and long crack growth. The long crack growth life can be estimated by the Paris law, but fatigue crack initiation and small crack growth are sensitive to the microstructures and have been difficult to predict. In this work, the microstructure of 7075 aluminum alloy was reconstructed based on experimental observations in the literature and crystal plasticity simulations were performed to calculate the elasto-plastic deformation behavior in the reconstructed polycrystalline model under cyclic deformation. The calculated local plastic strain was introduced into the crack initiation criterion (Tanaka and Mura, 1981) to predict fatigue crack initiation life. The predicted crack initiation life and crack morphology were in good agreement with the experimental results, indicating that the proposed method is effective in predicting fatigue crack initiation in aluminum alloys. From the obtained results, future issues regarding the prediction of fatigue crack initiation were discussed.

19.
Materials (Basel) ; 16(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37374615

RESUMO

The search for alternative materials that can be used for parts of aircraft hydraulic systems has led to the idea of applying S32750 duplex steel for this purpose. This steel is mainly used in the oil and gas, chemical, and food industries. The reasons for this lie in this material's exceptional welding, mechanical, and corrosion resistance properties. In order to verify this material's suitability for aircraft engineering applications, it is necessary to investigate its behaviour at various temperatures since aircrafts operate at a wide range of temperatures. For this reason, the effect of temperatures in the range from +20 °C to -80 °C on impact toughness was investigated in the case of S32750 duplex steel and its welded joints. Testing was performed using an instrumented pendulum to obtain force-time and energy-time diagrams, which allowed for more detailed assessment of the effect of testing temperature on total impact energy and its components of crack initiation energy and crack propagation energy. Testing was performed on standard Charpy specimens extracted from base metal (BM), welded metal (WM), and the heat-affected zone (HAZ). The results of these tests indicated high values of both crack initiation and propagation energies at room temperature for all the zones (BM, WM, and HAZ) and sufficient levels of crack propagation and total impact energies above -50 °C. In addition, fractography was conducted through optical microscopy (OM) and scanning electron microscopy (SEM), indicating ductile vs. cleavage fracture surface areas, which corresponded well with the impact toughness values. The results of this research confirm that the use of S32750 duplex steel in the manufacturing of aircraft hydraulic systems has considerable potential, and future work should confirm this.

20.
Materials (Basel) ; 16(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38138696

RESUMO

Due to their distinct physical, chemical, and mechanical features, high-entropy alloys have significantly broadened the possibilities of designing metal materials, and are anticipated to hold a crucial position in key engineering domains such as aviation and aerospace. The fatigue performance of high-entropy alloys is a crucial aspect in assessing their applicability as a structural material with immense potential. This paper provides an overview of fatigue experiments conducted on high-entropy alloys in the past two decades, focusing on crack initiation behavior, crack propagation modes, and fatigue life prediction models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA