Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
New Phytol ; 217(1): 233-244, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28921561

RESUMO

Nucleotide catabolism in Arabidopsis thaliana and Saccharomyces cerevisiae leads to the release of ribose, which requires phosphorylation to ribose-5-phosphate mediated by ribokinase (RBSK). We aimed to characterize RBSK in plants and yeast, to quantify the contribution of plant nucleotide catabolism to the ribose pool, and to investigate whether ribose carbon contributes to dark stress survival of plants. We performed a phylogenetic analysis and determined the kinetic constants of plant-expressed Arabidopsis and yeast RBSKs. Using mass spectrometry, several metabolites were quantified in AtRBSK mutants and double mutants with genes of nucleoside catabolism. Additionally, the dark stress performance of several nucleotide metabolism mutants and rbsk was compared. The plant PfkB family of sugar kinases forms nine major clades likely representing distinct biochemical functions, one of them RBSK. Nucleotide catabolism is the dominant ribose source in plant metabolism and is highly induced by dark stress. However, rbsk cannot be discerned from the wild type in dark stress. Interestingly, the accumulation of guanosine in a guanosine deaminase mutant strongly enhances dark stress symptoms. Although nucleotide catabolism contributes to carbon mobilization upon darkness and is the dominant source of ribose, the contribution appears to be of minor importance for dark stress survival.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nucleotídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ribose/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Escuridão , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Filogenia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Saccharomyces cerevisiae/genética , Estresse Fisiológico/efeitos da radiação
2.
Bull Exp Biol Med ; 162(6): 762-764, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28429215

RESUMO

Using the model of dark stress caused by animal maintenance at dimmed light we showed that Trametin (product obtained during liquid-phase culturing of Trametes pubescens xylotroph fungi) effectively prevented oxidative stress under conditions of light deprivation. The preparation increased the level of unsaturation of lipids, reduced the concentration of primary and end-products of LPO, and increases both the integral parameter of the antioxidant defense system (total antioxidant activity) and its components (activity of superoxide dismutase and reduced glutathione).


Assuntos
Antioxidantes/farmacologia , Misturas Complexas/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Trametes/química , Animais , Animais Lactentes , Antioxidantes/isolamento & purificação , Misturas Complexas/isolamento & purificação , Escuridão , Glutationa/sangue , Estresse Oxidativo , Superóxido Dismutase/sangue , Suínos , Vitamina A/sangue , alfa-Tocoferol/sangue
3.
Front Plant Sci ; 13: 828264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283908

RESUMO

Multiple endogenous and environmental signals regulate the intricate and highly complex processes driving leaf senescence in plants. A number of genes have been identified in a variety of plant species, including Arabidopsis, which influence leaf senescence. Previously, we have shown that HOS15 is a multifunctional protein that regulates several physiological processes, including plant growth and development under adverse environmental conditions. HOS15 has also been reported to form a chromatin remodeling complex with PWR and HDA9 and to regulate the chromatin structure of numerous genes. However, unlike PWR and HDA9, the involvement of HOS15 in leaf senescence is yet to be identified. Here, we report that HOS15, together with PWR and HDA9, promotes leaf senescence via transcriptional regulation of SAG12/29, senescence marker genes, and CAB1/RCBS1A, photosynthesis-related genes. The expression of ORE1, SAG12, and SAG29 was downregulated in hos15-2 plants, whereas the expression of photosynthesis-related genes, CAB1 and RCBS1A, was upregulated. HOS15 also promoted senescence through dark stress, as its mutation led to a much greener phenotype than that of the WT. Phenotypes of double and triple mutants of HOS15 with PWR and HDA9 produced phenotypes similar to those of a single hos15-2. In line with this observation, the expression levels of NPX1, APG9, and WRKY57 were significantly elevated in hos15-2 and hos15/pwr, hos15/hda9, and hos15/pwr/hda9 mutants compared to those in the WT. Surprisingly, the total H3 acetylation level decreased in age-dependent manner and under dark stress in WT; however, it remained the same in hos15-2 plants regardless of dark stress, suggesting that dark-induced deacetylation requires functional HOS15. More interestingly, the promoters of APG9, NPX1, and WRKY57 were hyperacetylated in hos15-2 plants compared to those in WT plants. Our data reveal that HOS15 acts as a positive regulator and works in the same repressor complex with PWR and HDA9 to promote leaf senescence through aging and dark stress by repressing NPX1, APG9, and WRKY57 acetylation.

4.
FEBS Open Bio ; 12(1): 231-249, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792288

RESUMO

Exposure to extended periods of darkness is a common source of abiotic stress that significantly affects plant growth and development. To understand how Nicotiana benthamiana responds to dark stress, the proteomes and metabolomes of leaves treated with darkness were studied. In total, 5763 proteins and 165 primary metabolites were identified following dark treatment. Additionally, the expression of autophagy-related gene (ATG) proteins was transiently upregulated. Weighted gene coexpression network analysis (WGCNA) was utilized to find the protein modules associated with the response to dark stress. A total of four coexpression modules were obtained. The results indicated that heat-shock protein (HSP70), SnRK1-interacting protein 1, 2A phosphatase-associated protein of 46 kDa (Tap46), and glutamate dehydrogenase (GDH) might play crucial roles in N. benthamiana's response to dark stress. Furthermore, a protein-protein interaction (PPI) network was constructed and top-degreed proteins were predicted to identify potential key factors in the response to dark stress. These proteins include isopropylmalate isomerase (IPMI), eukaryotic elongation factor 5A (ELF5A), and ribosomal protein 5A (RPS5A). Finally, metabolic analysis suggested that some amino acids and sugars were involved in the dark-responsive pathways. Thus, these results provide a new avenue for understanding the defensive mechanism against dark stress at the protein and metabolic levels in N. benthamiana.


Assuntos
Metabolômica , Nicotiana , Proteômica , Redes Reguladoras de Genes , Metaboloma , Folhas de Planta/metabolismo , Proteoma , Nicotiana/genética , Nicotiana/metabolismo
5.
FEMS Microbiol Lett ; 369(1)2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35746875

RESUMO

The cost of microalgae cultivation is one of the largest limitations to achieving sustainable, large-scale microalgae production of commercially desirable lipids. Utilizing CO2 as a 'free' carbon source from waste industrial flue gas emissions can offer wide-ranging cost savings. However, these gas streams typically create acidic environments, in which most microalgae cannot survive due to the concentration of CO2 and the presence of other acidic gasses such as NO2 and SO2. To address this situation, we investigated growth of a mixed acid-tolerant green microalgal culture (91% dominated by a single Coccomyxa sp. taxon) bioprospected at pH 2.8 from an acid mine drainage impacted water body. The culture was grown at pH 2.5 and fed with a simulated flue gas containing 6% CO2 and 94% N2. On reaching the end of the exponential growth phase, the culture was exposed to either continued light-dark cycle conditions or continual dark conditions. After three days in the dark, the biomass consisted of 28% of lipids, which was 42% higher than at the end of the exponential phase and 55% higher than the maximum lipid content achieved under light/dark conditions. The stress caused by being continually in the dark also favoured the production of omega-3 and omega-6 polyunsaturated fatty acids (PUFAs; 19.47% and 21.04%, respectively, after 7 days) compared to 7-days of light-dark treatment (1.94% and 9.53%, respectively) and showed an increase in nitrogen content (C:N ratio of 6.4) compared to light-dark treatment (C:N ratio of 11.9). The results of the research indicate that use of acid tolerant microalgae overcomes issues using flue gasses that will create an acidic environment and that applying dark stress is a low-cost stressor stimulates production of desirable dietary lipids.


Assuntos
Microalgas , Biocombustíveis , Biomassa , Dióxido de Carbono/química , Gases/química , Lipídeos
6.
Plant Physiol Biochem ; 155: 549-559, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32846390

RESUMO

Flavonoid biosynthesis is a crucial secondary metabolism process for tea plants. Its metabolism is affected by multiple environmental factors, especially light. Shade, also known as dark stress (DS), is generally used during cultivation to improve tea quality by influencing the flavonoid accumulation. To explore the molecular mechanisms of flavonoid biosynthesis under DS, metabolomics and transcriptomics (METR) analyses were performed in tea callus via culturing the plants in vitro using 12 h light/12 h dark cycles (A) or completely dark (B) conditions for 30 days. In total, 161 differential metabolic products (DMPs) and 3592 differential expression genes (DEGs) were identified. The major flavonoids including epicatechin gallate, catechin gallate, gallocatechin-catechin, cyanidin 3-O-glucoside and the total of catechin, anthocyanin and proanthocyanidin contents were all remarkably down-regulated in tea callus under DS. Meanwhile, 9 genes including CsPAL, Cs4CL, CsCHS, CsFLS, CsDFR, CsANS, CsLAR, CsANR, and CsUFGT determined to be responsible for the flavonoid biosynthesis. In addition, 2 transcription factors (TFs) including CsMYBT1 and CsMYBT2 verified to play key role in regulation the flavonoid biosynthesis. These results helped us further understand the underlying molecular mechanism of flavonoid metabolism in tea plants.


Assuntos
Camellia sinensis , Escuridão , Flavonoides/biossíntese , Camellia sinensis/metabolismo , Camellia sinensis/efeitos da radiação , Catequina , Regulação da Expressão Gênica de Plantas , Metaboloma , Proteínas de Plantas/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA