Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 9: 643645, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012962

RESUMO

There is still a lack of fast and accurate classification tools to identify the taxonomies of noisy long reads, which is a bottleneck to the use of the promising long-read metagenomic sequencing technologies. Herein, we propose de Bruijn graph-based Sparse Approximate Match Block Analyzer (deSAMBA), a tailored long-read classification approach that uses a novel pseudo alignment algorithm based on sparse approximate match block (SAMB). Benchmarks on real sequencing datasets demonstrate that deSAMBA enables to achieve high yields and fast speed simultaneously, which outperforms state-of-the-art tools and has many potentials to cutting-edge metagenomics studies.

2.
Genome Biol ; 20(1): 274, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842925

RESUMO

The alignment of long-read RNA sequencing reads is non-trivial due to high sequencing errors and complicated gene structures. We propose deSALT, a tailored two-pass alignment approach, which constructs graph-based alignment skeletons to infer exons and uses them to generate spliced reference sequences to produce refined alignments. deSALT addresses several difficult technical issues, such as small exons and sequencing errors, which break through bottlenecks of long RNA-seq read alignment. Benchmarks demonstrate that deSALT has a greater ability to produce accurate and homogeneous full-length alignments. deSALT is available at: https://github.com/hitbc/deSALT.


Assuntos
Alinhamento de Sequência/métodos , Animais , Humanos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA