Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(31): e2304246, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37691096

RESUMO

The efficiency of antimony selenide (Sb2 Se3 ) solar cells is still limited by significant interface and deep-level defects, in addition to carrier recombination at the back contact surface. This paper investigates the use of lithium (Li) ions as dopant for Sb2 Se3 films, using lithium hydroxide (LiOH) as a dopant medium. Surprisingly, the LiOH solution not only reacts at the back surface of the Sb2 Se3 film but also penetrate inside the film along the (Sb4 Se6 )n molecular chain. First, the Li ions modify the grain boundary's carrier type and create an electric field between p-type grain interiors and n-type grain boundary. Second, a gradient band structure is formed along the vertical direction with the diffusion of Li ions. Third, carrier collection and transport are improved at the surface between Sb2 Se3 and the Au layer due to the reaction between the film and alkaline solution. Additionally, the diffusion of Li ions increases the crystallinity, orientation, surface evenness, and optical electricity. Ultimately, the efficiency of Sb2 Se3 solar cells is improved to 7.57% due to the enhanced carrier extraction, transport, and collection, as well as the reduction of carrier recombination and deep defect density. This efficiency is also a record for CdS/Sb2 Se3 solar cells fabricated by rapid thermal evaporation.

2.
Adv Sci (Weinh) ; 9(9): e2105268, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35077014

RESUMO

Characterizing defect levels and identifying the compositional elements in semiconducting materials are important research subject for understanding the mechanism of photogenerated carrier recombination and reducing energy loss during solar energy conversion. Here it shows that deep-level defect in antimony triselenide (Sb2 Se3 ) is sensitively dependent on the stoichiometry. For the first time it experimentally observes the formation of amphoteric SbSe defect in Sb-rich Sb2 Se3 . This amphoteric defect possesses equivalent capability of trapping electron and hole, which plays critical role in charge recombination and device performance. In comparative investigation, it also uncovers the reason why Se-rich Sb2 Se3 is able to deliver high device performance from the defect formation perspective. This study demonstrates the crucial defect types in Sb2 Se3 and provides a guidance toward the fabrication of efficient Sb2 Se3 photovoltaic device and relevant optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA