Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Neurosci ; 40(37): 7105-7118, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32817247

RESUMO

The hippocampus plays an essential role in learning. Each of the three major hippocampal subfields, dentate gyrus (DG), CA3, and CA1, has a unique function in memory formation and consolidation, and also exhibit distinct local field potential (LFP) signatures during memory consolidation processes in non-rapid eye movement (NREM) sleep. The classic LFP events of the CA1 region, sharp-wave ripples (SWRs), are induced by CA3 activity and considered to be an electrophysiological biomarker for episodic memory. In LFP recordings along the dorsal CA1-DG axis from sleeping male mice, we detected and classified two types of LFP events in the DG: high-amplitude dentate spikes (DSs), and a novel event type whose current source density (CSD) signature resembled that seen during CA1 SWR, but which, most often, occurred independently of them. Because we hypothesize that this event type is similarly induced by CA3 activity, we refer to it as dentate sharp wave (DSW). We show that both DSWs and DSs differentially modulate the electrophysiological properties of SWR and multiunit activity (MUA). Following two hippocampus-dependent memory tasks, DSW occurrence rates, ripple frequencies, and ripple and sharp wave (SW) amplitudes were increased in both, while SWR occurrence rates in dorsal CA1 increased only after the spatial task. Our results suggest that DSWs, like SWRs, are induced by CA3 activity and that DSWs complement SWRs as a hippocampal LFP biomarker of memory consolidation.SIGNIFICANCE STATEMENT Awake experience is consolidated into long-term memories during sleep. Memory consolidation crucially depends on sharp-wave ripples (SWRs), which are local field potential (LFP) patterns in hippocampal CA1 that increase after learning. The dentate gyrus (DG) plays a central role in the process of memory formation, prompting us to cluster sharp waves (SWs) in the DG [dentate SWs (DSWs)] during sleep. We show that both DSW coupling to CA1 SWRs, and their occurrence rates, robustly increase after learning trials. Our results suggest that the DG is directly affected by memory consolidation processes. DSWs may thus complement SWRs as a sensitive electrophysiological biomarker of memory consolidation in mice.


Assuntos
Ondas Encefálicas , Giro Denteado/fisiologia , Memória , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sono REM , Vigília
2.
J Neurophysiol ; 121(1): 131-139, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30461365

RESUMO

Hippocampal dentate spikes (DSs) are short-duration, large-amplitude fluctuations in hilar local field potentials and take place while resting and sleeping. During DSs, dentate gyrus granule cells increase firing while CA1 pyramidal cells decrease firing. Recent findings suggest DSs play a significant role in memory consolidation after training on a hippocampus-dependent, nonspatial associative learning task. Here, we aimed to find out whether DSs are important in other types of hippocampus-dependent learning tasks as well. To this end, we trained adult male Sprague-Dawley rats in a spatial reference memory task, a fixed interval task, and a pattern separation task. During a rest period immediately after each training session, we either let neural activity to take place as usual, timed electrical stimulation of the ventral hippocampal commissure (vHC) to immediately follow DSs, or applied the vHC stimulation during a random neural state. We found no effect of vHC stimulation on performance in the spatial reference memory task or in the fixed interval task. Surprisingly, vHC stimulation, especially contingent on DSs, improved performance in the pattern separation task. In conclusion, the behavioral relevance of hippocampal processing and DSs seems to depend on the task at hand. It could be that in an intact brain, offline memory consolidation by default involves associating neural representations of temporally separate but related events. In some cases this might be beneficial for adaptive behavior in the future (associative learning), while in other cases it might not (pattern separation). NEW & NOTEWORTHY The behavioral relevance of dentate spikes seems to depend on the learning task at hand. We suggest that dentate spikes are related to associating neural representations of temporally separate but related events within the dentate gyrus. In some cases this might be beneficial for adaptive behavior in the future (associative learning), while in other cases it might not (pattern separation).


Assuntos
Aprendizagem por Associação/fisiologia , Giro Denteado/fisiologia , Aprendizagem em Labirinto/fisiologia , Consolidação da Memória/fisiologia , Neurônios/fisiologia , Memória Espacial/fisiologia , Potenciais de Ação , Animais , Discriminação Psicológica/fisiologia , Estimulação Elétrica , Masculino , Ratos Sprague-Dawley , Fatores de Tempo
3.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37961150

RESUMO

Synchronous excitatory discharges from the entorhinal cortex (EC) to the dentate gyrus (DG) generate fast and prominent patterns in the hilar local field potential (LFP), called dentate spikes (DSs). As sharp-wave ripples in CA1, DSs are more likely to occur in quiet behavioral states, when memory consolidation is thought to take place. However, their functions in mnemonic processes are yet to be elucidated. The classification of DSs into types 1 or 2 is determined by their origin in the lateral or medial EC, as revealed by current source density (CSD) analysis, which requires recordings from linear probes with multiple electrodes spanning the DG layers. To allow the investigation of the functional role of each DS type in recordings obtained from single electrodes and tetrodes, which are abundant in the field, we developed an unsupervised method using Gaussian mixture models to classify such events based on their waveforms. Our classification approach achieved high accuracies (> 80%) when validated in 8 mice with DG laminar profiles. The average CSDs, waveforms, rates, and widths of the DS types obtained through our method closely resembled those derived from the CSD-based classification. As an example of application, we used the technique to analyze single-electrode LFPs from apolipoprotein (apo) E3 and apoE4 knock-in mice. We observed that the latter group, which is a model for Alzheimer's disease, exhibited wider DSs of both types from a young age, with a larger effect size for DS type 2, likely reflecting early pathophysiological alterations in the EC-DG network, such as hyperactivity. In addition to the applicability of the method in expanding the study of DS types, our results show that their waveforms carry information about their origins, suggesting different underlying network dynamics and roles in memory processing.

4.
5.
Cell Rep ; 36(5): 109497, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34348165

RESUMO

Mouse hippocampus CA1 place-cell discharge typically encodes current location, but during slow gamma dominance (SGdom), when SG oscillations (30-50 Hz) dominate mid-frequency gamma oscillations (70-90 Hz) in CA1 local field potentials, CA1 discharge switches to represent distant recollected locations. We report that dentate spike type 2 (DSM) events initiated by medial entorhinal cortex II (MECII)→ dentate gyrus (DG) inputs promote SGdom and change excitation-inhibition coordinated discharge in DG, CA3, and CA1, whereas type 1 (DSL) events initiated by lateral entorhinal cortex II (LECII)→DG inputs do not. Just before SGdom, LECII-originating SG oscillations in DG and CA3-originating SG oscillations in CA1 phase and frequency synchronize at the DSM peak when discharge within DG and CA3 increases to promote excitation-inhibition cofiring within and across the DG→CA3→CA1 pathway. This optimizes discharge for the 5-10 ms DG-to-CA1 neuro-transmission that SGdom initiates. DSM properties identify extrahippocampal control of SGdom and a cortico-hippocampal mechanism that switches between memory-related modes of information processing.


Assuntos
Potenciais de Ação/fisiologia , Hipocampo/fisiologia , Animais , Comportamento Animal/fisiologia , Biomarcadores/metabolismo , Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Giro Denteado/fisiologia , Ritmo Gama/fisiologia , Memória/fisiologia , Camundongos Endogâmicos C57BL , Via Perfurante/fisiologia , Transdução de Sinais
6.
Neurosci Res ; 140: 43-52, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30408501

RESUMO

Anatomical observations, theoretical work and lesioning experiments have supported the idea that the CA3 in the hippocampus is important for encoding, storage and retrieval of memory while the dentate gyrus (DG) is important for the pattern separation of the incoming inputs from the entorhinal cortex. Study of the presumed function of the dentate gyrus in pattern separation has been hampered by the lack of reliable methods to identify different excitatory cell types in the DG. Recent papers have identified different cell types in the DG, in awake behaving animals, with more reliable methods. These studies have revealed each cell type's spatial representation as well as their involvement in pattern separation. Moreover, chronic electrophysiological recording from sleeping and waking animals also provided more insights into the operation of the DG-CA3 system for memory encoding and retrieval. This article will review the local circuit architectures and physiological properties of the DG-CA3 system and discuss how the local circuit in the DG-CA3 may function, incorporating recent physiological findings in the DG-CA3 system.


Assuntos
Região CA3 Hipocampal/fisiologia , Giro Denteado/fisiologia , Vias Neurais/fisiologia , Potenciais de Ação/fisiologia , Animais , Região CA3 Hipocampal/anatomia & histologia , Giro Denteado/anatomia & histologia , Córtex Entorrinal/anatomia & histologia , Córtex Entorrinal/fisiologia , Memória Espacial/fisiologia , Lobo Temporal/anatomia & histologia , Lobo Temporal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA