Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 309
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(9): e2313192121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38386706

RESUMO

Enzymes catalyze biochemical reactions through precise positioning of substrates, cofactors, and amino acids to modulate the transition-state free energy. However, the role of conformational dynamics remains poorly understood due to poor experimental access. This shortcoming is evident with Escherichia coli dihydrofolate reductase (DHFR), a model system for the role of protein dynamics in catalysis, for which it is unknown how the enzyme regulates the different active site environments required to facilitate proton and hydride transfer. Here, we describe ligand-, temperature-, and electric-field-based perturbations during X-ray diffraction experiments to map the conformational dynamics of the Michaelis complex of DHFR. We resolve coupled global and local motions and find that these motions are engaged by the protonated substrate to promote efficient catalysis. This result suggests a fundamental design principle for multistep enzymes in which pre-existing dynamics enable intermediates to drive rapid electrostatic reorganization to facilitate subsequent chemical steps.


Assuntos
Aminoácidos , Eletricidade , Catálise , Escherichia coli , Conformação Molecular , Tetra-Hidrofolato Desidrogenase
2.
Mol Cell Proteomics ; 23(3): 100718, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224738

RESUMO

A functional role has been ascribed to the human dihydrofolate reductase 2 (DHFR2) gene based on the enzymatic activity of recombinant versions of the predicted translated protein. However, the in vivo function is still unclear. The high amino acid sequence identity (92%) between DHFR2 and its parental homolog, DHFR, makes analysis of the endogenous protein challenging. This paper describes a targeted mass spectrometry proteomics approach in several human cell lines and tissue types to identify DHFR2-specific peptides as evidence of its translation. We show definitive evidence that the DHFR2 activity in the mitochondria is in fact mediated by DHFR, and not DHFR2. Analysis of Ribo-seq data and an experimental assessment of ribosome association using a sucrose cushion showed that the two main Ensembl annotated mRNA isoforms of DHFR2, 201 and 202, are differentially associated with the ribosome. This indicates a functional role at both the RNA and protein level. However, we were unable to detect DHFR2 protein at a detectable level in most cell types examined despite various RNA isoforms of DHFR2 being relatively abundant. We did detect a DHFR2-specific peptide in embryonic heart, indicating that the protein may have a specific role during embryogenesis. We propose that the main functionality of the DHFR2 gene in adult cells is likely to arise at the RNA level.


Assuntos
RNA , Tetra-Hidrofolato Desidrogenase , Humanos , Linhagem Celular , Peptídeos/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismo , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo
3.
J Cell Biochem ; 125(3): e30533, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38345373

RESUMO

Dihydrofolate reductase (DHFR) is a ubiquitous enzyme that regulates the biosynthesis of tetrahydrofolate among various species of Plasmodium parasite. It is a validated target of the antifolate drug pyrimethamine (Pyr) in Plasmodium falciparum (Pf), but its clinical efficacy has been hampered due to the emergence of drug resistance. This has made the attempt to screen Food & Drug Administration-approved drugs against wild- and mutant PfDHFR by employing an in-silico pipeline to identify potent candidates. The current study has followed a virtual screening approach for identifying potential DHFR inhibitors from DrugBank database, based on a structure similarity search of candidates, followed by absorption, distribution, metabolism, and excretion estimation. The screened drugs were subjected to various parameters like docking, molecular mechanics with generalized born and surface area solvation calculations, and molecular simulations. We have thus identified two potential drug candidates, duloxetine and guanethidine, which can be repurposed to be tested for their efficacy against wild type and drug resistant falciparum malaria.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/química , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Preparações Farmacêuticas , Reposicionamento de Medicamentos , Malária/tratamento farmacológico , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/química , Resistência a Medicamentos , Ácido Fólico
4.
Antimicrob Agents Chemother ; 68(9): e0042324, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39136469

RESUMO

Babesia and Plasmodium pathogens, the causative agents of babesiosis and malaria, are vector-borne intraerythrocytic protozoan parasites, posing significant threats to both human and animal health. The widespread resistance exhibited by these pathogens to various classes of antiparasitic drugs underscores the need for the development of novel and more effective therapeutic strategies. Antifolates have long been recognized as attractive antiparasitic drugs as they target the folate pathway, which is essential for the biosynthesis of purines and pyrimidines, and thus is vital for the survival and proliferation of protozoan parasites. More efficacious and safer analogs within this class are needed to overcome challenges due to resistance to commonly used antifolates, such as pyrimethamine, and to address liabilities associated with the dihydrotriazines, WR99210 and JPC-2067. Here, we utilized an in vitro culture condition suitable for the continuous propagation of Babesia duncani, Babesia divergens, Babesia MO1, and Plasmodium falciparum in human erythrocytes to screen a library of 50 dihydrotriazines and 29 biguanides for their efficacy in vitro and compared their potency and therapeutic indices across different species and isolates. We identified nine analogs that inhibit the growth of all species, including the P. falciparum pyrimethamine-resistant strain HB3, with IC50 values below 10 nM, and display excellent in vitro therapeutic indices. These compounds hold substantial promise as lead antifolates for further development as broad-spectrum antiparasitic drugs.


Assuntos
Babesia , Eritrócitos , Plasmodium falciparum , Triazinas , Triazinas/farmacologia , Humanos , Babesia/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Eritrócitos/parasitologia , Eritrócitos/efeitos dos fármacos , Babesiose/tratamento farmacológico , Babesiose/parasitologia , Antimaláricos/farmacologia , Testes de Sensibilidade Parasitária , Antagonistas do Ácido Fólico/farmacologia
5.
Antimicrob Agents Chemother ; 68(1): e0071723, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38018963

RESUMO

The Mycobacterium abscessus drug development pipeline is poorly populated, with particularly few validated target-lead couples to initiate de novo drug discovery. Trimethoprim, an inhibitor of dihydrofolate reductase (DHFR) used for the treatment of a range of bacterial infections, is not active against M. abscessus. Thus, evidence that M. abscessus DHFR is vulnerable to pharmacological intervention with a small molecule inhibitor is lacking. Here, we show that the pyrrolo-quinazoline PQD-1, previously identified as a DHFR inhibitor active against Mycobacterium tuberculosis, exerts whole cell activity against M. abscessus. Enzyme inhibition studies showed that PQD-1, in contrast to trimethoprim, is a potent inhibitor of M. abscessus DHFR and over-expression of DHFR causes resistance to PQD-1, providing biochemical and genetic evidence that DHFR is a vulnerable target and mediates PQD-1's growth inhibitory activity in M. abscessus. As observed in M. tuberculosis, PQD-1 resistant mutations mapped to the folate pathway enzyme thymidylate synthase (TYMS) ThyA. Like trimethoprim in other bacteria, PQD-1 synergizes with the dihydropteroate synthase (DHPS) inhibitor sulfamethoxazole (SMX), offering an opportunity to exploit the successful dual inhibition of the folate pathway and develop similarly potent combinations against M. abscessus. PQD-1 is active against subspecies of M. abscessus and a panel of clinical isolates, providing epidemiological validation of the target-lead couple. Leveraging a series of PQD-1 analogs, we have demonstrated a dynamic structure-activity relationship (SAR). Collectively, the results identify M. abscessus DHFR as an attractive target and PQD-1 as a chemical starting point for the discovery of novel drugs and drug combinations that target the folate pathway in M. abscessus.


Assuntos
Antagonistas do Ácido Fólico , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Mycobacterium tuberculosis , Humanos , Mycobacterium abscessus/genética , Mycobacterium abscessus/metabolismo , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Trimetoprima/farmacologia , Mycobacterium tuberculosis/metabolismo , Inibidores Enzimáticos/farmacologia , Ácido Fólico , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico
6.
Bioorg Chem ; 153: 107789, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39250850

RESUMO

Recently, P218, a new flexible antifolate targeting Plasmodium falciparum dihydrofolate reductase (PfDHFR), has entered its clinical trial with good safety profile and effective Pf infection prevention. However, it carries a free carboxyl terminal, which is hydrophilic and prone to metabolic glucuronidation. Here, a new series of P218 analogues carrying butyrolactone has been synthesized with the purpose of enhancing lipophilicity and minimizing metabolic instability. The inhibition constants against the mutant PfDHFR enzymes are in sub-nanomolar level and the antimalarial activity against antifolate-resistant parasites are in the low micromolar range. The crystal structure of the most potent analogue LA1 bound enzyme complex indicates interaction with multiple residues, including Arg122 and Phe116 in the active site. In vitro log D7.4 and kinetic solubility confirmed a higher lipophilicity of this butyrolactone series as compared to P218. These outcomes suggest the possibility to further develop butyrolactone derivatives as non-carboxyl antiplasmodial antifolates.

7.
Bioorg Chem ; 148: 107401, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38749115

RESUMO

New thienopyrimidine derivatives 2-16 have been synthesized and their in vitro cytotoxicity was evaluated against five different human cancer cell lines HCT-116, Hela, MDA-MB-231, MCF7 and PC3. Compounds 6e, 7a, 7b, 7d, 10c and 10e displayed the highest antitumor activity against all tested cell lines compared to Doxorubicin. Enzyme inhibition assay revealed that compounds 6e and 10e showed high inhibitory activity against EGFR-TK, with IC50 values of 0.133 and 0.151 µM, compared to Olmutinib (IC50 = 0.028 µM); while the highest DHFR inhibitory activity was shown by compounds 7d and 10e with IC50 values of 0.462 and 0.541 µM, compared to Methotrexate (IC50 = 0.117 µM). Cell cycle analysis following a flow cytometric study using colorectal HCT-116 cancer cell line proved that compound 6e induced cell cycle arrest in G0-G1 phase, while compound 10e arrested the cell cycle at both G0-G1 and S phases. Additionally, both compounds (6e and 10e) were potently able to induce apoptosis in HCT-116 cell line. Docking results of compounds 6e and 10e into the pocket of EGFR active site showed their similar main binding features with Olmutinib, while compounds 7d and 10e showed only moderate fitting into DHFR compared to methotrexate. In silico studies revealed that most of the tested compounds obeyed Lipinski's RO5 and showed positive drug likeness scores.


Assuntos
Antineoplásicos , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB , Antagonistas do Ácido Fólico , Simulação de Acoplamento Molecular , Pirimidinas , Tetra-Hidrofolato Desidrogenase , Humanos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Pirimidinas/farmacologia , Pirimidinas/química , Pirimidinas/síntese química , Tetra-Hidrofolato Desidrogenase/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/síntese química , Antagonistas do Ácido Fólico/química , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química
8.
Bioorg Chem ; 150: 107538, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38861913

RESUMO

New imidazo[2,1-b]thiazole analogs were designed, synthesized, and biologically evaluated as anticancer agents. In vitro biological evaluation of the anticancer properties of the compounds was performed against different cancer cell lines. Compounds 23 and 39 showed remarkable broad -spectrum cytotoxic potency on most of the tested cell lines. Compounds 23 and 39 exhibited potent activity against the MCF-7 breast cancer cell line, with IC50 values of 1.81 and 4.95 µM, respectively, compared to DOX and SOR (IC50 values of 4.17 and 7.26 µM, respectively). An enzyme inhibition assay was carried out to clarify the possible mode of action of the tested compounds. Compounds 23 and 39 were identified as possible EGFR, HER-2, and DHFR inhibitors. Cell cycle arrest results indicated that compound 23 caused cell cycle arrest at the G0/G1 phase in the MCF-7 cells and at the G2/M phase in the Hep G2 cells. Compound 39 induced cell cycle arrest at the G2/M phase in Hela cells. In vivo testing of the anticancer activity of the two most promising molecules in this study was conducted, and the results indicated that they possess considerable in vivo anticancer activity in mice. Data obtained from the molecular modeling simulation study were consistent with the biological evaluation results.


Assuntos
Antineoplásicos , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB , Antagonistas do Ácido Fólico , Receptor ErbB-2 , Tetra-Hidrofolato Desidrogenase , Tiazóis , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Tiazóis/química , Tiazóis/farmacologia , Tiazóis/síntese química , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/metabolismo , Relação Estrutura-Atividade , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Proliferação de Células/efeitos dos fármacos , Tetra-Hidrofolato Desidrogenase/metabolismo , Animais , Estrutura Molecular , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/síntese química , Antagonistas do Ácido Fólico/química , Relação Dose-Resposta a Droga , Camundongos , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/síntese química , Modelos Moleculares , Linhagem Celular Tumoral
9.
Xenobiotica ; 54(2): 95-105, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38381003

RESUMO

Polymorphisms in genes coding folate-metabolising enzymes might alter the pharmacokinetics and sensitivity for methotrexate "MTX".The aim of the study aimed to investigate the influence of MTHFR C677T, DHFR19 Ins/del, GGH -401 C > T, and MTR A2756G polymorphisms on MTX toxicity and pharmacokinetics in Egyptian patients with Acute lymphoblastic leukaemia (ALL) or Non-Hodgkin lymphoma (NHL).Fifty adult Egyptian patients with ALL and NHL, treated with high dose MTX, were prospectively enrolled in the study. Clinical and biochemical data was collected objectively from medical records after each cycle of MTX. Plasma concentrations of MTX were measured after 72 h of initiation of infusion. Genotyping was done with a PCR-ARMS and PCR-RFLP assays.The MTHFR C677T T variants significantly increased the risk of leukopoenia, whereas the genotype MTHFR 677 C > T TT significantly associated with lymphocytopenia, thrombocytopenia, and anaemia. The genotype GGH-401 TT was significantly correlated with anaemia. Plasma MTX level was significantly higher in patients with MTR A2756G G variants.MTHFR polymorphism played the main role in MTX toxicities. The pharmacokinetics of MTX was affected by MTR polymorphism. GGH mutation was mainly concerned with anaemia. Pharmacogenetic testing are recommended to optimise MTX therapy.


Assuntos
Anemia , Linfoma , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Humanos , Metotrexato/efeitos adversos , Egito , Polimorfismo de Nucleotídeo Único , Linfoma/tratamento farmacológico , Genótipo , Anemia/tratamento farmacológico , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
10.
J Appl Toxicol ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135265

RESUMO

Cardiotoxicity is one of the most devastating complications of cancer treatment by methotrexate (MTX). The present study aimed to investigate the potential anti-cardiotoxic efficacy of taurine (Tau) and enzymatically modified isoquercitrin (EMIQ) alone or combined against MTX-induced cardiotoxicity in adult male rats. A total of 36 rats were randomly divided into six groups (six animals each): control, MTX (a single i.p. dose of 20 mg/kg), EMIQ + MTX (26 mg/kg of EMIQ, p.o. for 16 days), Tau + MTX (500 mg/kg of Tau, p.o. for 16 days), EMIQ + Tau + MTX at the same previous doses, and (EMIQ + Tau)½ + MTX. MTX reduced the percentage of body weight change, the expression of dihydrofolate reductase (DHFR) and folypolyglutamyl synthetase (FPGS), the cleaved tumor necrosis factor alpha (TNF-α) level in the cardiac tissue, and the elevated serum TNF-α level. MTX extensively deteriorated the electrocardiography (ECG), inducing tachycardia with shortening of the time intervals between successive heartbeats (R-R interval), associated with elongation of ventricular depolarization (QRS interval), and the corrected total time for ventricular de- and repolarization (QTc) duration. Treatment with MTX resulted in a significant reduction in atrial depolarization (P amplitude) and rapid repolarization (T amplitude) and a significant elevation in plateau phase (ST height). MTX treatment resulted in swelling of cardiomyocytes with extensive vacuolization of sarcoplasm with numerous variably sized vacuoles in addition to apoptotic cells. Tau and EMIQ protected against MTX-induced deteriorations in the conductivity and rhythmicity of the heart through antioxidative, anti-inflammatory, and antiapoptotic activities. Treatment with tau and EMIQ combined at high or low doses offered superior protection to the heart than using each agent alone.

11.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161270

RESUMO

Triaza-coumarin (TA-C) is a Mycobacterium tuberculosis (Mtb) dihydrofolate reductase (DHFR) inhibitor with an IC50 (half maximal inhibitory concentration) of ∼1 µM against the enzyme. Despite this moderate target inhibition, TA-C shows exquisite antimycobacterial activity (MIC50, concentration inhibiting growth by 50% = 10 to 20 nM). Here, we investigated the mechanism underlying this potency disconnect. To confirm that TA-C targets DHFR and investigate its unusual potency pattern, we focused on resistance mechanisms. In Mtb, resistance to DHFR inhibitors is frequently associated with mutations in thymidylate synthase thyA, which sensitizes Mtb to DHFR inhibition, rather than in DHFR itself. We observed thyA mutations, consistent with TA-C interfering with the folate pathway. A second resistance mechanism involved biosynthesis of the redox coenzyme F420 Thus, we hypothesized that TA-C may be metabolized by Mtb F420-dependent oxidoreductases (FDORs). By chemically blocking the putative site of FDOR-mediated reduction in TA-C, we reproduced the F420-dependent resistance phenotype, suggesting that F420H2-dependent reduction is required for TA-C to exert its potent antibacterial activity. Indeed, chemically synthesized TA-C-Acid, the putative product of TA-C reduction, displayed a 100-fold lower IC50 against DHFR. Screening seven recombinant Mtb FDORs revealed that at least two of these enzymes reduce TA-C. This redundancy in activation explains why no mutations in the activating enzymes were identified in the resistance screen. Analysis of the reaction products confirmed that FDORs reduce TA-C at the predicted site, yielding TA-C-Acid. This work demonstrates that intrabacterial metabolism converts TA-C, a moderately active "prodrug," into a 100-fold-more-potent DHFR inhibitor, thus explaining the disconnect between enzymatic and whole-cell activity.


Assuntos
Antagonistas do Ácido Fólico/farmacologia , Complexos Multienzimáticos/metabolismo , Mycobacterium tuberculosis/enzimologia , Oxirredutases/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo , Cumarínicos/química , Cumarínicos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/química , Genes Bacterianos , Mutação com Perda de Função/genética , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Oxirredução , Tetra-Hidrofolato Desidrogenase/genética
12.
Chem Biodivers ; 21(6): e202400200, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570192

RESUMO

In order to develop novel antimicrobial agents, we prepared quinoline bearing pyrimidine analogues 2-7, 8 a-d and 9 a-d and their structures were elucidated by spectroscopic techniques. Furthermore, our second aim was to predict the interactions between the active compounds and enzymes (DNA gyrase and DHFR). In this work, fourteen pyrimido[4,5-b]quinoline derivatives were prepared and assessed for their antimicrobial potential by estimating zone of inhibition. All the screened candidates displayed antibacterial potential with zone of inhibition range of 9-24 mm compared with ampicillin (20-25 mm) as a reference drug. Moreover, the target derivatives 2 (ZI=16), 9 c (ZI=17 mm) and 9 d (ZI=16 mm) recorded higher antifungal activity against C. albicans to that exhibited by the antifungal drug amphotericin B (ZI=15 mm). Finally, the most potent pyrimidoquinoline compounds (2, 3, 8 c, 8 d, 9 c and 9 d) were docked inside DHFR and DNA gyrase active sites and they recorded excellent fitting within the active regions of DNA gyrase and DHFR. These outcomes revealed us that compounds (2, 3, 8 c, 8 d, 9 c and 9 d) could be lead compounds to discover novel antibacterial candidates.


Assuntos
Antibacterianos , Candida albicans , DNA Girase , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Quinolinas , Tetra-Hidrofolato Desidrogenase , Quinolinas/química , Quinolinas/farmacologia , DNA Girase/metabolismo , DNA Girase/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Tetra-Hidrofolato Desidrogenase/química , Candida albicans/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Relação Estrutura-Atividade , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/síntese química , Estrutura Molecular , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/síntese química , Relação Dose-Resposta a Droga
13.
Drug Dev Res ; 85(5): e22233, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39030842

RESUMO

Malaria is an intracellular protozoan parasitic disease caused by Plasmodium species with significant morbidity and mortality in endemic regions. The complex lifecycle of the parasite and the emergence of drug-resistant Plasmodium falciparum have hampered the efficacy of current anti-malarial agents. To circumvent this situation, the present study attempts to demonstrate the blood-stage anti-plasmodial action of 26 hybrid compounds containing the three privileged bioactive scaffolds (sulfonamide, chalcone, and nitro group) with synergistic and multitarget action. These three parent scaffolds exhibit divergent activities, such as antibacterial, anti-malarial, anti-fungal, anti-inflammatory, and anticancer. All the synthesised compounds were characterised using various spectroscopic techniques. The in vitro blood-stage inhibitory activity of 26 hybrid compounds was evaluated against mixed-stage culture (asynchronize) of human malarial parasite P. falciparum, Pf 3D7 at different concentrations ranging from 25.0 µg/mL to 0.78 µg/mL using SYBR 1 green assay, with IC50 values determined after 48 h of treatment based on the drug-response curves. Two potent compounds (11 and 10), with 2-Br and 2,6-diCl substitutions, showed pronounced activity with IC50 values of 5.4 µg/mL and 5.6 µg/mL, whereas others displayed varied activity with IC50 values ranging from 7.0 µg/mL to 22.0 µg/mL. Both 11 and 10 showed greater susceptibility towards mature-stage trophozoites than ring-stage parasites. The hemolytic and in vitro cytotoxicity assays revealed that compounds 11 and 10 did not cause any toxic effects on host red blood cells (uninfected), human-derived Mo7e cells, and murine-derived BA/F3 cells. The in vitro observations are consistent with the in silico studies using P. falciparum-dihydrofolate reductase, where 11 and 10 showed a binding affinity of -10.4 Kcal/mol. This is the first report of the hybrid scaffold, 4-nitrobenzenesulfonamide chalcones, demonstrating its potential as an anti-plasmodial agent.


Assuntos
Antimaláricos , Chalconas , Desenho de Fármacos , Plasmodium falciparum , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/farmacologia , Antimaláricos/síntese química , Antimaláricos/química , Chalconas/farmacologia , Chalconas/síntese química , Chalconas/química , Humanos , Simulação de Acoplamento Molecular , Sulfonamidas/farmacologia , Sulfonamidas/química , Sulfonamidas/síntese química , Simulação por Computador , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/metabolismo
14.
Antimicrob Agents Chemother ; 67(4): e0160122, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36916920

RESUMO

Sulfadoxine-pyrimethamine (SP) is used for prevention of malaria in pregnant women in Angola. We sequenced the Plasmodium falciparum dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes, implicated in SP resistance, in samples collected during a 2019 study of artemisinin-based combination therapy efficacy in Benguela, Lunda Sul, and Zaire provinces. A total of 90 day 0 and day of failure samples were individually sequenced, while 508 day 0 samples from participants without recurrent parasitemia were pooled after DNA extraction into 61 pools. The N51I, C59R, and S108N pfdhfr mutations and A437G pfdhps mutations were present at high proportions in all provinces (weighted allele frequencies, 62% to 100%). The K540E pfdhps mutation was present at lower proportions (10% to 14%). The A581G pfdhps mutation was only observed in Zaire, at a 4.6% estimated prevalence. The I431V and A613S mutations were also only observed in Zaire, at a prevalence of 2.8% to 2.9%. The most common (27% to 66%) reconstructed haplotype in all three provinces was the canonical quadruple pfdhfr pfdhps mutant. The canonical quintuple mutant was absent in Lunda Sul and Benguela and present in 7.9% of samples in Zaire. A single canonical sextuple (2.6%) mutant was observed in Zaire Province. Proportions of the pfdhps K540E and A581G mutations were well below the World Health Organization thresholds for meaningful SP resistance (prevalence of 95% for K540E and 10% for A581G). Samples from therapeutic efficacy studies represent a convenient source of samples for monitoring SP resistance markers.


Assuntos
Antimaláricos , Malária Falciparum , Criança , Feminino , Humanos , Gravidez , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Angola , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Sulfadoxina/farmacologia , Sulfadoxina/uso terapêutico , Combinação de Medicamentos , Tetra-Hidrofolato Desidrogenase/genética , Resistência a Medicamentos/genética
15.
Mol Syst Biol ; 18(9): e10490, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36124745

RESUMO

Dose-response relationships are a general concept for quantitatively describing biological systems across multiple scales, from the molecular to the whole-cell level. A clinically relevant example is the bacterial growth response to antibiotics, which is routinely characterized by dose-response curves. The shape of the dose-response curve varies drastically between antibiotics and plays a key role in treatment, drug interactions, and resistance evolution. However, the mechanisms shaping the dose-response curve remain largely unclear. Here, we show in Escherichia coli that the distinctively shallow dose-response curve of the antibiotic trimethoprim is caused by a negative growth-mediated feedback loop: Trimethoprim slows growth, which in turn weakens the effect of this antibiotic. At the molecular level, this feedback is caused by the upregulation of the drug target dihydrofolate reductase (FolA/DHFR). We show that this upregulation is not a specific response to trimethoprim but follows a universal trend line that depends primarily on the growth rate, irrespective of its cause. Rewiring the feedback loop alters the dose-response curve in a predictable manner, which we corroborate using a mathematical model of cellular resource allocation and growth. Our results indicate that growth-mediated feedback loops may shape drug responses more generally and could be exploited to design evolutionary traps that enable selection against drug resistance.


Assuntos
Antibacterianos , Tetra-Hidrofolato Desidrogenase , Antibacterianos/farmacologia , Escherichia coli/genética , Retroalimentação , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/farmacologia , Trimetoprima/farmacologia
16.
Malar J ; 22(1): 213, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474966

RESUMO

BACKGROUND: Artemisinin-based combinations therapy (ACT) is the current frontline curative therapy for uncomplicated malaria in Burkina Faso. Sulfadoxine-pyrimethamine (SP) is used for the preventive treatment of pregnant women (IPTp), while SP plus amodiaquine (SP-AQ) is recommended for children under five in seasonal malaria chemoprevention (SMC). This study aimed to assess the proportions of mutations in the P. falciparum multidrug-resistance 1 (Pfmdr1), P. falciparum chloroquine resistance transporter (Pfcrt), P. falciparum dihydrofolate reductase (pfdhfr), and P. falciparum dihydropteroate synthase (pfdhps), genes from isolates collected during household surveys in Burkina Faso. METHODS: Dried blood spots from Plasmodium falciparum-positive cases at three sites (Orodara, Gaoua, and Banfora) collected during the peak of transmission were analysed for mutations in Pfcrt (codons 72-76, 93, 97, 145, 218, 343, 350 and 353), Pfmdr-1 (codons 86, 184, 1034, 1042 and 1246) dhfr (codons 51, 59, 108, 164) and dhps (at codons 431, 436, 437, 540, 581, 613) genes using deep sequencing of multiplexed Polymerase chaine reaction (PCR) amplicons. RESULTS: Of the 377 samples analysed, 346 (91.7%), 369 (97.9%), 368 (97.6%), and 374 (99.2%) were successfully sequenced for Pfcrt, Pfmdr-1, dhfr, and dhps, respectively. Most of the samples had a Pfcrt wild-type allele (89.3%). The 76T mutation was below 10%. The most frequent Pfmdr-1 mutation was detected at codon 184 (Y > F, 30.9%). The single mutant genotype (NFSND) predominated (66.7%), followed by the wild-type genotype (NYSND, 30.4%). The highest dhfr mutations were observed at codon 59R (69.8%), followed by codons 51I (66.6%) and 108 N (14.7%). The double mutant genotype (ACIRSI) predominated (52.4%). For mutation in the dhps gene, the highest frequency was observed at codon 437 K (89.3%), followed by codons 436 A (61.2%), and 613 S (14.4%). The double mutant genotype (IAKKAA) and the single mutant genotype (ISKKAA) were predominant (37.7% and 37.2%, respectively). The most frequent dhfr/dhps haplotypes were the triple mutant ACIRSI/IAKKAA (23%), the wild-type ACNCSI/ISKKAA (19%) and the double mutant ACIRSI/ISKKAA (14%). A septuple mutant ACIRNI/VAKKGA was observed in 2 isolates from Gaoua (0.5%). CONCLUSION: The efficacy of ACT partner drugs and drugs used in IPTp and SMC does not appear to be affected by the low proportion of highly resistant mutants observed in this study. Continued monitoring, including molecular surveillance, is critical for decision-making on effective treatment policy in Burkina Faso.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Criança , Feminino , Gravidez , Plasmodium falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Burkina Faso , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Sulfadoxina/farmacologia , Sulfadoxina/uso terapêutico , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Malária Falciparum/tratamento farmacológico , Malária/tratamento farmacológico , Mutação , Tetra-Hidrofolato Desidrogenase/genética , Combinação de Medicamentos , Resistência a Medicamentos/genética , Códon
17.
Bioorg Med Chem Lett ; 87: 129285, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37054758

RESUMO

A new series of N-[4-(2-substituted hydrazine-1-carbonyl)thiazole-2-yl]acetamides was synthesized and evaluated in vitro against six human cell lines as antitumor agents. Compounds 20, 21 and 22 showed remarkable inhibition to HeLa (IC50 values of 1.67, 3.81, 7.92 µM) and MCF-7 (IC50 values of 4.87, 5.81, 8.36 µM, respectively) cell growth with high selectivity indices and safety profiles. Compound 20 showed significant decreases in both tumor volume and body weight gain compared to vehicle control, in the solid tumor animal model of Ehrlich ascites carcinoma (EAC) with recovered caspase-3 immuno-expression. Flow cytometry cell analysis showed that 20 exerts anti-proliferative activity in mutant Hela and MCF-7 cell lines through arresting the cell growth at the G1/S phase producing cell death via apoptosis rather than necrosis. To explain the antitumor mode of action of the most active compounds, EGFR-TK and DHFR inhibition assays were carried out. Compound 21 conveyed dual EGFR/DHFR inhibition with IC50 0.143 (EGFR) and 0.159 (DHFR) µM. Compound 20 showed DHFR inhibition with IC50 0.262 µM. Compound 22 exhibited the best EGFR inhibitory efficacy with IC50 0.131 µM. Molecular modelling study revealed that 21 and 22 have binding interactions with EGFR amino acid residues Lys745 and Asp855. Compounds 20 and 21 showed affinity toward DHFR amino acid residues Asn64, Ser59 and Phe31. The ADMET profile and Lipinski's rule of five calculated for these compounds were acceptable. Compounds 20, 21 and 22 could be regarded as promising prototype antitumor agents for further optimization.


Assuntos
Acetamidas , Antineoplásicos , Animais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Acetamidas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/química , Proliferação de Células , Apoptose , Células HeLa , Receptores ErbB , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia
18.
J Biochem Mol Toxicol ; 37(4): e23290, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36541419

RESUMO

In the present work, a library of 120 compounds was prepared using various aliphatic and aromatic amines. Finally, 10 compounds were selected through in silico screening carrying 4-aminobenzoyl-l-glutamic acid and 1,3,5-triazine moiety. The docking results of compounds 4d16 and 4d38 revealed higher binding interaction with amino acids Asp54 (-537.96 kcal/mol) and Asp54, Phe116 (-618.22 kcal/mol) against wild (1J3I) and quadruple mutant (1J3K) type of Pf-DHFR inhibitors and were comparable to standard WR99210. These compounds were developed by facile and microwave-assisted synthesis via nucleophilic substitution reaction and characterized by different spectroscopic methods. In vitro antimalarial assay results also suggested that these two compounds were having higher antimalarial activity against chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) strain out of the ten synthesized compounds with IC50 13.25 µM and 14.72 µM, respectively. These hybrid scaffolds might be useful in the lead discovery of a new class of Pf-DHFR inhibitors.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Antimaláricos/farmacologia , Antimaláricos/química , Ácido Glutâmico , Plasmodium falciparum , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/química , Cloroquina/farmacologia , Triazinas/farmacologia , Triazinas/química , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular
19.
Bioorg Chem ; 141: 106874, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37769524

RESUMO

New series of substituted 2-alkoxycyanopyridine derivatives were synthesized and evaluated for their in vitro and in vivo anticancer activities. Comparing the evaluated activities against cancer cell lines to the broad-spectrum anticancer doxorubicin, and the kinase inhibitor sorafenib, compounds 3a, 4b, 4c, 7a, and 8d demonstrated superior anticancer efficacy with elevated safety profiles and selectivity indices, particularly against MCF7 breast cancer. For exploration of their mechanism of action, assays for inhibition of EGFR, HER2 kinase, and DHFR were performed. The promising synthesized compounds exhibited potent dual kinase EGFR/HER2 inhibitory activity with IC50values of 0.248/0.156 µM for 4b and 0.138/0.092 µM for 4c. Additionally, with IC50 values of 0.138 and 0.193 M, respectively, 4b and 4c had the greatest DHFR inhibitory activity that was comparable to methotrexate. In the MCF7 breast cancer cell line, they caused arrest at the S phase of the cell cycle and exhibited apoptosis induction activity. With restored caspase-3 immunoexpression, the anti-breast cancer assay performed in vivo of 4b and 4c demonstrated a substantial decrease in tumor volume. Results from molecular modeling were in agreement with biological assays proving the importance of the 3-caynopyridine, two substituted phenyl rings attached to central pyridine ring, and propoxy side chain moieties for binding with the receptors. As 4c works by inhibiting both EGFR/HER2 kinase, DHFR enzymes, in addition to cellular apoptosis, it could be viewed as a model of compounds possessing a multi-targeting anticancer activity. Collectively, compounds 4b and 4c might represent prototypes for further development as anticancer molecules.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Estrutura Molecular , Relação Estrutura-Atividade , Receptores ErbB , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/química , Apoptose , Inibidores de Proteínas Quinases , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular
20.
J Enzyme Inhib Med Chem ; 38(1): 2203879, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37080777

RESUMO

A novel series of multifunctional pyrazolo[3,4-d]pyrimidine-based glutamate analogs (6a-l and 7a,b) have been designed and synthesized as antifolate anticancer agents. Among the tested compounds, 6i exhibited the most potent anti-proliferative activity towards NSCLC, CNS, Ovarian, Prostate, Colon, Melanoma, Breast, and Renal cancers with good to weak cytostatic activity and non-lethal actions. 6i demonstrated higher selectivity for cancer than normal cells. 6i could significantly increase the accumulation of S-phase cells during the cell cycle distribution of cancer cells with high potency in the induction of apoptosis. The results unveiled that 6i probably acts through dual inhibition of DHFR and TS enzymes (IC50 = 2.41 and 8.88 µM, correspondingly). Docking studies of 6i displayed that N1-p-bromophenyl and C3-Methyl groups participate in substantial hydrophobic interactions. The drug-likeness features inferred that 6i met the acceptance criteria of Pfizer. Taking together, 6i could be a promising prototype for further optimization as an effective anticancer drug.


Assuntos
Antineoplásicos , Antagonistas do Ácido Fólico , Neoplasias , Humanos , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Pirimidinas/química , Antineoplásicos/química , Estrutura Molecular , Proliferação de Células , Desenho de Fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA