Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Enzyme Inhib Med Chem ; 39(1): 2289355, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38059332

RESUMO

Liver cancer exhibits a high degree of heterogeneity and involves intricate mechanisms. Recent research has revealed the significant role of histone lysine methylation and acetylation in the epigenetic regulation of liver cancer development. In this study, five inhibitors capable of targeting both histone lysine methyltransferase nuclear receptor-binding SET domain 2 (NSD2) and histone deacetylase 2 (HDAC2) were identified using a structure-based virtual screening approach. Notably, DT-NH-1 displayed a potent inhibition of NSD2 (IC50 = 0.08 ± 0.03 µM) and HDAC2 (IC50 = 5.24 ± 0.87 nM). DT-NH-1 also demonstrated a strong anti-proliferative activity against various liver cancer cell lines, particularly HepG2 cells, and exhibited a high level of biological safety. In an experimental xenograft model involving HepG2 cells, DT-NH-1 showed a significant reduction in tumour growth. Consequently, these findings indicate that DT-NH-1 will be a promising lead compound for the treatment of liver cancer with epigenetic dual-target inhibitors.


Assuntos
Neoplasias Hepáticas , Simulação de Dinâmica Molecular , Humanos , Epigênese Genética , Histona Desacetilase 2/metabolismo , Detecção Precoce de Câncer , Neoplasias Hepáticas/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química
2.
J Enzyme Inhib Med Chem ; 38(1): 2241118, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37528657

RESUMO

Prostate cancer (PCa) is a clinically heterogeneous disease with a progressively increasing incidence. Concurrent inhibition of coactivator-associated arginine methyltransferase 1 (CARM1) and histone deacetylase 2 (HDAC2) could potentially be a novel strategy against PCa. Herein, we identified seven compounds simultaneously targeting CARM1 and HDAC2 through structure-based virtual screening. These compounds possessed potent inhibitory activities at the nanomolar level in vitro. Among them, CH-1 was the most active inhibitor which exhibited excellent and balanced inhibitory effects against both CARM1 (IC50 = 3.71 ± 0.11 nM) and HDAC2 (IC50 = 4.07 ± 0.25 nM). MD simulations presented that CH-1 could stably bind the active pockets of CARM1 and HDAC2. Notably, CH-1 exhibited strong anti-proliferative activity against multiple prostate-related tumour cells (IC50 < 1 µM). In vivo, assessment indicated that CH-1 significantly inhibited tumour growth in a DU145 xenograft model. Collectively, CH-1 could be a promising drug candidate for PCa treatment.


Assuntos
Antineoplásicos , Neoplasias da Próstata , Masculino , Humanos , Histona Desacetilase 2/metabolismo , Antineoplásicos/farmacologia , Proteína-Arginina N-Metiltransferases/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Inibidores de Histona Desacetilases/farmacologia
3.
Eur J Med Chem ; 275: 116571, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38857566

RESUMO

Histone Deacetylase 6 (HDAC6) is an essential regulator of histone acetylation processes, exerting influence on a multitude of cellular functions such as cell motility, endocytosis, autophagy, apoptosis, and protein trafficking through its deacetylation activity. The significant implications of HDAC6 in diseases such as cancer, neurodegenerative disorders, and immune disorders have motivated extensive investigation into the development of specific inhibitors targeting this enzyme for therapeutic purposes. Single targeting drugs carry the risk of inducing drug resistance, thus prompting exploration of dual targeting therapy which offers the potential to impact multiple signaling pathways simultaneously, thereby lowering the likelihood of resistance development. While pharmacological studies have exhibited promise in combined therapy involving HDAC6, challenges related to potential drug interactions exist. In response to these challenges, researchers are investigating HDAC6 hybrid molecules which enable the concomitant targeting of HDAC6 and other key proteins, thus enhancing treatment efficacy while mitigating side effects and reducing the risk of resistance compared to traditional combination therapies. The published design strategies for dual targeting inhibitors of HDAC6 are summarized and discussed in this review. This will provide some valuable insights into more novel HDAC6 dual targeting inhibitors to meet the urgent need for innovative therapies in oncology and other related fields.


Assuntos
Antineoplásicos , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases , Neoplasias , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/metabolismo , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/síntese química , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/química , Estrutura Molecular , Animais
4.
Eur J Med Chem ; 200: 112338, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32497960

RESUMO

Histone modifying proteins, specifically histone deacetylases (HDACs) and bromodomains, have emerged as novel promising targets for anticancer therapy. In the current work, based on available crystal structures and docking studies, we designed dual inhibitors of both HDAC6/8 and the bromodomain and PHD finger containing protein 1 (BRPF1). Biochemical and biophysical tests showed that compounds 23a,b and 37 are nanomolar inhibitors of both target proteins. Detailed structure-activity relationships were deduced for the synthesized inhibitors which were supported by extensive docking and molecular dynamics studies. Cellular testing in acute myeloid leukemia (AML) cells showed only a weak effect, most probably because of the poor permeability of the inhibitors. We also aimed to analyse the target engagement and the cellular activity of the novel inhibitors by determining the protein acetylation levels in cells by western blotting (tubulin vs histone acetylation), and by assessing their effects on various cancer cell lines.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Antineoplásicos/síntese química , Proteínas de Ligação a DNA/antagonistas & inibidores , Desenho de Fármacos , Desacetilase 6 de Histona/antagonistas & inibidores , Proteínas Repressoras/antagonistas & inibidores , Acetilação/efeitos dos fármacos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA