Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(23)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297345

RESUMO

Quality checks, assessments, and the assurance of food products, raw materials, and food ingredients is critically important to ensure the safeguard of foods of high quality for safety and public health. Nevertheless, quality checks, assessments, and the assurance of food products along distribution and supply chains is impacted by various challenges. For instance, the development of portable, sensitive, low-cost, and robust instrumentation that is capable of real-time, accurate, and sensitive analysis, quality checks, assessments, and the assurance of food products in the field and/or in the production line in a food manufacturing industry is a major technological and analytical challenge. Other significant challenges include analytical method development, method validation strategies, and the non-availability of reference materials and/or standards for emerging food contaminants. The simplicity, portability, non-invasive, non-destructive properties, and low-cost of NIR spectrometers, make them appealing and desirable instruments of choice for rapid quality checks, assessments and assurances of food products, raw materials, and ingredients. This review article surveys literature and examines current challenges and breakthroughs in quality checks and the assessment of a variety of food products, raw materials, and ingredients. Specifically, recent technological innovations and notable advances in quartz crystal microbalances (QCM), electroanalytical techniques, and near infrared (NIR) spectroscopic instrument development in the quality assessment of selected food products, and the analysis of food raw materials and ingredients for foodborne pathogen detection between January 2019 and July 2020 are highlighted. In addition, chemometric approaches and multivariate analyses of spectral data for NIR instrumental calibration and sample analyses for quality assessments and assurances of selected food products and electrochemical methods for foodborne pathogen detection are discussed. Moreover, this review provides insight into the future trajectory of innovative technological developments in QCM, electroanalytical techniques, NIR spectroscopy, and multivariate analyses relating to general applications for the quality assessment of food products.


Assuntos
Técnicas de Microbalança de Cristal de Quartzo , Espectroscopia de Luz Próxima ao Infravermelho , Calibragem , Indústria de Processamento de Alimentos , Análise Multivariada
2.
Food Chem ; 460(Pt 2): 140548, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39096799

RESUMO

Electrochemical sensors and electroanalytical techniques become emerging as effective and low-cost tools for rapid assessment of special parameters of the food quality. Chemically modified electrodes are developed to change properties and behaviour, particularly sensitivity and selectivity, of conventional electroanalytical sensors. Within this comprehensive review, novel trends in chemical modifiers material structure, electrodes construction and flow analysis platforms are described and evaluated. Numerous recent application examples for the detection of food specific analytes are presented in a form of table to stimulate further development in both, the basic research and commercial field.


Assuntos
Técnicas Eletroquímicas , Eletrodos , Análise de Alimentos , Contaminação de Alimentos , Análise de Alimentos/instrumentação , Técnicas Eletroquímicas/instrumentação , Contaminação de Alimentos/análise
3.
Talanta ; 225: 121974, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33592722

RESUMO

Magnetic nanomaterials (MNMs) have gained high attention in different fields of studies due to their ferromagnetic/superparamagnetic properties and their low toxicity and high biocompatibility. MNMs contain magnetic elements such as iron and nickel in metallic, bimetallic, metal oxide, and mixed metal oxide. In electroanalytical methods, MNMs have been applied as sorbents for sample preparation before the electrochemical detection (sorbent role), as the electrode modifier (catalytic role), and the integration of the above two roles (as both sorbent and catalytic agent). In this paper, the application of MNMs in electroanalytical methods have been classified based on the main role of the nanomaterial and discussed separately. Furthermore, catalytic activities of MNMs in electroanalytical methods such as redox electrocatalytic, nanozymes catalytic (peroxidase, catalase activity, oxidase activity, superoxide dismutase activity), catalyst gate, and nanocontainer have been discussed.

4.
Biosensors (Basel) ; 11(8)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34436093

RESUMO

Robust, reliable, and affordable analytical techniques are essential for screening and monitoring food and water safety from contaminants, pathogens, and allergens that might be harmful upon consumption. Recent advances in decentralised, miniaturised, and rapid tests for health and environmental monitoring can provide an alternative solution to the classic laboratory-based analytical techniques currently utilised. Electrochemical biosensors offer a promising option as portable sensing platforms to expedite the transition from laboratory benchtop to on-site analysis. A plethora of electroanalytical sensor platforms have been produced for the detection of small molecules, proteins, and microorganisms vital to ensuring food and drink safety. These utilise various recognition systems, from direct electrochemical redox processes to biological recognition elements such as antibodies, enzymes, and aptamers; however, further exploration needs to be carried out, with many systems requiring validation against standard benchtop laboratory-based techniques to offer increased confidence in the sensing platforms. This short review demonstrates that electroanalytical biosensors already offer a sensitive, fast, and low-cost sensor platform for food and drink safety monitoring. With continued research into the development of these sensors, increased confidence in the safety of food and drink products for manufacturers, policy makers, and end users will result.


Assuntos
Técnicas Eletroquímicas , Análise de Alimentos/métodos , Alérgenos , Técnicas Biossensoriais , Eletroquímica , Alimentos , Humanos
5.
Anal Chim Acta ; 1132: 1-9, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32980098

RESUMO

Three-dimensional printing techniques have been widely used in the fabrication of new materials applied to energy, sensing and electronics due to unique advantages, such as fast prototyping, reduced waste generation, and multiple fabrication designs. In this paper, the production of a conductive 3D-printing filament composed of Ni(OH)2 microparticles and graphene within a polylactic acid matrix (Ni-G-PLA) is reported. The nanocomposite was characterized by thermogravimetric, energy-dispersive X-ray spectroscopic, scanning electronic microscopic, Raman spectroscopic and electrochemical techniques. Characteristics such as printability (using fused deposition modelling), electrical conductivity and mechanical stability of the polymer nanocomposite were evaluated before and after 3D printing. The novel 3D-printed disposable electrode was applied for selective detection of glucose (enzyme-less sensor) with a detection limit of 2.4 µmol L-1, free from the interference of ascorbic acid, urea and uric acid, compounds typically found in biological samples. The sensor was assembled in a portable electrochemical system that enables fast (160 injection h-1), precise (RSD < 5%) and selective determination of glucose without the need of enzymes (electrocatalytic properties of the Ni-G-PLA nanocomposite). The obtained results showed that Ni-G-PLA is a promising material for the production of disposable sensors for selective detection of glucose using a simple and low-cost 3D-printer.


Assuntos
Técnicas Eletroquímicas , Glucose , Níquel , Condutividade Elétrica , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA