Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dev Dyn ; 251(4): 577-608, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34582081

RESUMO

Primary cilia are dynamic compartments that regulate multiple aspects of cellular signaling. The production, maintenance, and function of cilia involve more than 1000 genes in mammals, and their mutations disrupt the ciliary signaling which manifests in a plethora of pathological conditions-the ciliopathies. Skeletal ciliopathies are genetic disorders affecting the development and homeostasis of the skeleton, and encompass a broad spectrum of pathologies ranging from isolated polydactyly to lethal syndromic dysplasias. The recent advances in forward genetics allowed for the identification of novel regulators of skeletogenesis, and revealed a growing list of ciliary proteins that are critical for signaling pathways implicated in bone physiology. Among these, a group of protein kinases involved in cilia assembly, maintenance, signaling, and disassembly has emerged. In this review, we summarize the functions of cilia kinases in skeletal development and disease, and discuss the available and upcoming treatment options.


Assuntos
Ciliopatias , Polidactilia , Animais , Cílios/metabolismo , Ciliopatias/genética , Ciliopatias/patologia , Homeostase , Mamíferos , Polidactilia/genética , Proteínas/genética
2.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142232

RESUMO

The discovery of bone morphogenetic proteins (BMPs) inspired hope for the successful treatment of bone disorders, but side effects worsening the clinical effects were eventually observed. BMPs exert a synergistic effect, stimulating osteogenesis; however, predicting the best composition of growth factors for use in humans is difficult. Chondrocytes present within the growth plate produce growth factors stored in calcified cartilage adhering to metaphysis. These factors stimulate initial bone formation in metaphysis. We have previously determined the growth factors present in bovine calcified cartilage and produced by rat epiphyseal chondrocytes. The results suggest that growth factors stimulating physiological ossification are species dependent. The collection of human calcified cartilage for growth factors determination does not appear feasible, but chondrocytes for mRNA determination could be obtained. Their collection from young recipients, in view of the Academy of Medical Royal Colleges Recommendation, would be ethical. The authors of this review do not have facilities to conduct such a study and can only appeal to competent institutions to undertake the task. The results could help to formulate a better recipe for the stimulation of bone formation and improve clinical results.


Assuntos
Proteínas Morfogenéticas Ósseas , Osteogênese , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Cartilagem/metabolismo , Bovinos , Condrócitos/metabolismo , Lâmina de Crescimento/metabolismo , Humanos , Osteogênese/fisiologia , RNA Mensageiro/metabolismo , Ratos
3.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36232472

RESUMO

Mucopolysaccharidosis type I (MPSI) (OMIM #252800) is an autosomal recessive disorder caused by pathogenic variants in the IDUA gene encoding for the lysosomal alpha-L-iduronidase enzyme. The deficiency of this enzyme causes systemic accumulation of glycosaminoglycans (GAGs). Although disease manifestations are typically not apparent at birth, they can present early in life, are progressive, and include a wide spectrum of phenotypic findings. Among these, the storage of GAGs within the lysosomes disrupts cell function and metabolism in the cartilage, thus impairing normal bone development and ossification. Skeletal manifestations of MPSI are often refractory to treatment and severely affect patients' quality of life. This review discusses the pathological and molecular processes leading to impaired endochondral ossification in MPSI patients and the limitations of current therapeutic approaches. Understanding the underlying mechanisms responsible for the skeletal phenotype in MPSI patients is crucial, as it could lead to the development of new therapeutic strategies targeting the skeletal abnormalities of MPSI in the early stages of the disease.


Assuntos
Iduronidase , Mucopolissacaridose I , Glicosaminoglicanos/metabolismo , Humanos , Iduronidase/genética , Mucopolissacaridose I/genética , Fenótipo , Qualidade de Vida
4.
Biochem J ; 477(13): 2421-2438, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32391876

RESUMO

One of the fundamental questions in bone biology is where osteoblasts originate and how osteoblast differentiation is regulated. The mechanism underlying which factors regulate chondrocyte to osteoblast lineage commitment remains unknown. Our data showed that Runt-related transcription factor 1 (Runx1) is expressed at different stages of both chondrocyte and osteoblast differentiation. Runx1 chondrocyte-specific knockout (Runx1f/fCol2α1-cre) mice exhibited impaired cartilage formation, decreased bone density, and an osteoporotic phenotype. The expressions of chondrocyte differentiation regulation genes, including Sox9, Ihh, CyclinD1, PTH1R, and hypertrophic chondrocyte marker genes including Col2α1, Runx2, MMP13, Col10α1 in the growth plate were significantly decreased in Runx1f/fCol2α1-cre mice chondrocytes. Importantly, the expression of osteoblast differentiation regulation genes including Osx, Runx2, ATF4, and osteoblast marker genes including osteocalcin (OCN) and osteopontin (OPN) were significantly decreased in the osteoblasts of Runx1f/fCol2α1-cre mice. Notably, our data showed that osteoblast differentiation regulation genes and marker genes are also expressed in chondrocytes and the expressions of these marker genes were significantly decreased in the chondrocytes of Runx1f/fCol2α1-cre mice. Our data showed that chromatin immunoprecipitation (ChIP) and promoter mapping analysis revealed that Runx1 directly binds to the Indian hedgehog homolog (Ihh) promoter to regulate its expression, indicating that Runx1 directly regulates the transcriptional expression of chondrocyte genes. Collectively, we revealed that Runx1 signals chondrocyte to osteoblast lineage commitment and promotes endochondral bone formation through enhancing both chondrogenesis and osteogenesis genes expressions, indicating Runx1 may be a therapeutic target to enhance endochondral bone formation and prevent osteoporosis fractures.


Assuntos
Condrócitos/citologia , Condrócitos/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Adipogenia/genética , Adipogenia/fisiologia , Animais , Western Blotting , Células Cultivadas , Condrogênese/genética , Condrogênese/fisiologia , Imunoprecipitação da Cromatina , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Imunofluorescência , Imuno-Histoquímica , Camundongos , Osteogênese/genética , Osteogênese/fisiologia , Reação em Cadeia da Polimerase em Tempo Real
5.
FASEB J ; 33(5): 6378-6389, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30776318

RESUMO

Central ischemic necrosis is one of the biggest obstacles in the clinical application of traditional tissue-engineered bone (TEB) in critical-sized bone defect regeneration. Because of its ability to promote vascular invasion, endochondral ossification-based TEB has been applied for bone defect regeneration. However, inadequate chondrocyte hypertrophy can hinder vascular invasion and matrix mineralization during endochondral ossification. In light of recent studies suggesting that ceria nanoparticles (CNPs) improve the blood vessel distribution within TEB, we modified TEB scaffold surfaces with CNPs and investigated the effect and mechanism of CNPs on endochondral ossification-based bone regeneration. The CNPs used in this study were synthesized by the microemulsion method and modified with alendronate-anchored polyethylene glycol 600. We showed that CNPs accelerated new bone formation and enhanced endochondral ossification-based bone regeneration in both a subcutaneous ectopic osteogenesis model and a mouse model of critical-sized bone defects. Mechanistically, CNPs significantly promoted endochondral ossification-based bone regeneration by ensuring sufficient hypertrophic differentiation via the activation of the RNA helicase, DEAH (Asp-Glu-Ala-His) box helicase 15, and its downstream target, p38 MAPK. These results suggested that CNPs could be applied as a biomaterial to improve the efficacy of endochondral ossification-based bone regeneration in critical-sized bone defects.-Li, J., Kang, F., Gong, X., Bai, Y., Dai, J., Zhao, C., Dou, C., Cao, Z., Liang, M., Dong, R., Jiang, H., Yang, X., Dong, S. Ceria nanoparticles enhance endochondral ossification-based critical-sized bone defect regeneration by promoting the hypertrophic differentiation of BMSCs via DHX15 activation.


Assuntos
Células da Medula Óssea/metabolismo , Regeneração Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Cério , Fêmur , Células-Tronco Mesenquimais/metabolismo , Nanopartículas/química , Osteogênese/efeitos dos fármacos , RNA Helicases/metabolismo , Animais , Células da Medula Óssea/patologia , Cério/química , Cério/farmacologia , Fêmur/lesões , Fêmur/metabolismo , Fêmur/patologia , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
6.
J Biol Chem ; 293(24): 9162-9175, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29735531

RESUMO

Chondrocyte hypertrophy is the terminal step in chondrocyte differentiation and is crucial for endochondral bone formation. How signaling pathways regulate chondrocyte hypertrophic differentiation remains incompletely understood. In this study, using a Tbx18:Cre (Tbx18Cre/+) gene-deletion approach, we selectively deleted the gene for the signaling protein SMAD family member 4 (Smad4f/f ) in the limbs of mice. We found that the Smad4-deficient mice develop a prominent shortened limb, with decreased expression of chondrocyte differentiation markers, including Col2a1 and Acan, in the humerus at mid-to-late gestation. The most striking defects in these mice were the absence of stylopod elements and failure of chondrocyte hypertrophy in the humerus. Moreover, expression levels of the chondrocyte hypertrophy-related markers Col10a1 and Panx3 were significantly decreased. Of note, we also observed that the expression of runt-related transcription factor 2 (Runx2), a critical mediator of chondrocyte hypertrophy, was also down-regulated in Smad4-deficient limbs. To determine how the skeletal defects arose in the mouse mutants, we performed RNA-Seq with ChIP-Seq analyses and found that Smad4 directly binds to regulatory elements in the Runx2 promoter. Our results suggest a new mechanism whereby Smad4 controls chondrocyte hypertrophy by up-regulating Runx2 expression during skeletal development. The regulatory mechanism involving Smad4-mediated Runx2 activation uncovered here provides critical insights into bone development and pathogenesis of chondrodysplasia.


Assuntos
Desenvolvimento Ósseo , Condrócitos/patologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Proteína Smad4/genética , Animais , Diferenciação Celular , Proliferação de Células , Condrócitos/citologia , Condrócitos/metabolismo , Condrogênese , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Hipertrofia/genética , Hipertrofia/metabolismo , Hipertrofia/patologia , Camundongos , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patologia , Proteína Smad4/metabolismo
7.
Biochem Biophys Res Commun ; 516(4): 1097-1102, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31280862

RESUMO

The maturation of chondrocytes is strictly regulated for proper endochondral bone formation. Although recent studies have revealed that intracellular metabolic processes regulate the proliferation and differentiation of cells, little is known about how changes in metabolite levels regulate chondrocyte maturation. To identify the metabolites which regulate chondrocyte maturation, we performed a metabolome analysis on chondrocytes of Sik3 knockout mice, in which chondrocyte maturation is delayed. Among the metabolites, acetyl-CoA was decreased in this model. Immunohistochemical analysis of the Sik3 knockout chondrocytes indicated that the expression levels of phospho-pyruvate dehydrogenase (phospho-Pdh), an inactivated form of Pdh, which is an enzyme that converts pyruvate to acetyl-CoA, and of Pdh kinase 4 (Pdk4), which phosphorylates Pdh, were increased. Inhibition of Pdh by treatment with CPI613 delayed chondrocyte maturation in metatarsal primordial cartilage in organ culture. These results collectively suggest that decreasing the acetyl-CoA level is a cause and not result of the delayed chondrocyte maturation. Sik3 appears to increase the acetyl-CoA level by decreasing the expression level of Pdk4. Blocking ATP synthesis in the TCA cycle by treatment with rotenone also delayed chondrocyte maturation in metatarsal primordial cartilage in organ culture, suggesting the possibility that depriving acetyl-CoA as a substrate for the TCA cycle is responsible for the delayed maturation. Our finding of acetyl-CoA as a regulator of chondrocyte maturation could contribute to understanding the regulatory mechanisms controlling endochondral bone formation by metabolites.


Assuntos
Acetilcoenzima A/metabolismo , Condrócitos/metabolismo , Osteogênese , Proteínas Serina-Treonina Quinases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Condrócitos/citologia , Condrogênese , Feminino , Deleção de Genes , Metaboloma , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética
8.
Development ; 143(10): 1811-22, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27052727

RESUMO

Fibroblast growth factor (FGF) signaling is important for skeletal development; however, cell-specific functions, redundancy and feedback mechanisms regulating bone growth are poorly understood. FGF receptors 1 and 2 (Fgfr1 and Fgfr2) are both expressed in the osteoprogenitor lineage. Double conditional knockout mice, in which both receptors were inactivated using an osteoprogenitor-specific Cre driver, appeared normal at birth; however, these mice showed severe postnatal growth defects that include an ∼50% reduction in body weight and bone mass, and impaired longitudinal bone growth. Histological analysis showed reduced cortical and trabecular bone, suggesting cell-autonomous functions of FGF signaling during postnatal bone formation. Surprisingly, the double conditional knockout mice also showed growth plate defects and an arrest in chondrocyte proliferation. We provide genetic evidence of a non-cell-autonomous feedback pathway regulating Fgf9, Fgf18 and Pthlh expression, which led to increased expression and signaling of Fgfr3 in growth plate chondrocytes and suppression of chondrocyte proliferation. These observations show that FGF signaling in the osteoprogenitor lineage is obligately coupled to chondrocyte proliferation and the regulation of longitudinal bone growth.


Assuntos
Desenvolvimento Ósseo , Linhagem da Célula , Condrócitos/citologia , Fatores de Crescimento de Fibroblastos/metabolismo , Osteócitos/citologia , Transdução de Sinais , Células-Tronco/citologia , Animais , Animais Recém-Nascidos , Desenvolvimento Ósseo/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Lâmina de Crescimento/efeitos dos fármacos , Lâmina de Crescimento/metabolismo , Integrases/metabolismo , Camundongos Knockout , Modelos Biológicos , Osteócitos/efeitos dos fármacos , Osteócitos/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/administração & dosagem , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição Sp7 , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo
9.
Development ; 143(21): 3933-3943, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27621060

RESUMO

Recently, blood vessels have been implicated in the morphogenesis of various organs. The vasculature is also known to be essential for endochondral bone development, yet the underlying mechanism has remained elusive. We show that a unique composition of blood vessels facilitates the role of the endothelium in bone mineralization and morphogenesis. Immunostaining and electron microscopy showed that the endothelium in developing bones lacks basement membrane, which normally isolates the blood vessel from its surroundings. Further analysis revealed the presence of collagen type I on the endothelial wall of these vessels. Because collagen type I is the main component of the osteoid, we hypothesized that the bone vasculature guides the formation of the collagenous template and consequently of the mature bone. Indeed, some of the bone vessels were found to undergo mineralization. Moreover, the vascular pattern at each embryonic stage prefigured the mineral distribution pattern observed one day later. Finally, perturbation of vascular patterning by overexpressing Vegf in osteoblasts resulted in abnormal bone morphology, supporting a role for blood vessels in bone morphogenesis. These data reveal the unique composition of the endothelium in developing bones and indicate that vascular patterning plays a role in determining bone shape by forming a template for deposition of bone matrix.


Assuntos
Vasos Sanguíneos/embriologia , Desenvolvimento Ósseo/fisiologia , Colágeno Tipo I/metabolismo , Endotélio/metabolismo , Morfogênese/fisiologia , Animais , Vasos Sanguíneos/fisiologia , Padronização Corporal/fisiologia , Matriz Óssea/embriologia , Matriz Óssea/metabolismo , Osso e Ossos/embriologia , Osso e Ossos/metabolismo , Calcificação Fisiológica/fisiologia , Embrião de Mamíferos , Endotélio/irrigação sanguínea , Feminino , Camundongos , Camundongos Transgênicos , Osteoblastos/fisiologia , Gravidez
10.
FASEB J ; 32(8): 4573-4584, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29547701

RESUMO

Endochondral ossification is crucial for bone formation in both adult bone repair process and embryo long-bone development. In endochondral ossification, bone marrow-derived mesenchymal stem cells (BMSCs) first differentiate to chondrocytes, then BMSC-derived chondrocytes endure a hypertrophic process to generate new bone. Endochondral ossification-based bone repair is a promising strategy to cure massive bone defect, which is a major clinical issue in orthopedics. However, challenges still remain for this novel strategy. One challenge is to ensure the sufficient hypertrophic differentiation. Another is to maintain the survival of the above hypertrophic chondrocytes under the hypoxic environment of massive bone defect. To solve this issue, mangiferin (MAG) was introduced to endochondral ossification-based bone repair. In this report, we proved MAG to be a novel autophagy inducer, which promoted BMSC-derived hypertrophic chondrocyte survival against hypoxia-induced injury through inducing autophagy. Furthermore, MAG enhances hypertrophic differentiation of BMSC-derived chondrocytes via upregulating key hypertrophic markers. Mechanistically, MAG induced autophagy in BMSC-derived chondrocytes by promoting AMPKα phosphorylation. Additionally, MAG balanced the expression of sex-determining region Y-box 9 and runt-related transcription factor 2 to facilitate hypertrophic differentiation. These results indicated that MAG was a potential drug to improve the efficacy of endochondral ossification-based bone repair in massive bone defects.-Bai, Y., Liu, C., Fu, L., Gong, X., Dou, C., Cao, Z., Quan, H., Li, J., Kang, F., Dai, J., Zhao, C., Dong, S. Mangiferin enhances endochondral ossification-based bone repair in massive bone defect by inducing autophagy through activating AMP-activated protein kinase signaling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Osso e Ossos/diagnóstico por imagem , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Xantonas/farmacologia , Animais , Osso e Ossos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrogênese/efeitos dos fármacos , Feminino , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos BALB C , Fosforilação/efeitos dos fármacos
11.
Int J Mol Sci ; 20(5)2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30871109

RESUMO

Eleutherococcus extract mixture (EEM) is an herbal mixture of dried stem of Eleutherococcus sessiliflorus and germinated barley, which has been highly effective, in previous screening and among the traditional medicines to tonify innate qi and acquired qi, respectively. In this study, we investigate the effects of EEM on endochondral bone formation. Female adolescent rats were given EEM, growth hormone or vehicle for 10 days. Tetracycline was intraperitoneally injected to light the fluorescent band 72 h before sacrifice to determine endochondral bone formation. In order to evaluate endocrine or paracrine/autocrine mechanisms, expressions of insulin-like growth factor 1 (IGF1), insulin-like growth factor binding protein 3 (IGFBP3), or bone morphogenetic protein 2 (BMP2) were evaluated after EEM administration in liver or growth plate (GP). EEM oral administration significantly increased endochondral bone formation and proliferative and hypertrophic zonal heights of tibial GP. EEM also upregulated hepatic IGF1 and IGFBP3 mRNA expressions, and IGF1 and BMP2 expressions in GP. Taken together, EEM increases endochondral bone formation through stimulating proliferation and hypertrophy with upregulation of hepatic IGF1 and IGFBP3 expressions. Considering immunohistochemical studies, the effect of EEM may be due to increased local IGF1 and BMP2 expression in GP, which may be considered growth hormone (GH)-dependent endocrine and autocrine/paracrine pathways.


Assuntos
Desenvolvimento Ósseo/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Eleutherococcus/química , Osteogênese/efeitos dos fármacos , Extratos Vegetais/farmacologia , Tíbia/efeitos dos fármacos , Animais , Proteína Morfogenética Óssea 2/metabolismo , Proliferação de Células/efeitos dos fármacos , Condrócitos/metabolismo , Feminino , Hormônio do Crescimento/metabolismo , Lâmina de Crescimento/efeitos dos fármacos , Lâmina de Crescimento/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Tíbia/metabolismo
12.
Osteoarthritis Cartilage ; 26(11): 1551-1561, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30086379

RESUMO

OBJECTIVE: FGFR3 chondrodysplasia is caused by a gain-of-function mutation of the FGFR3 gene. The disease causes abnormal growth plate cartilage and lacks effective drug treatment. We sought to establish an in vivo model for the study of FGFR3 chondrodysplasia pathology and drug testing. DESIGN: We created cartilage from human induced pluripotent stem cells (hiPSCs) and transplanted the cartilage into the subcutaneous spaces of immunodeficient mice. We then created cartilage from the hiPSCs of patients with FGFR3 chondrodysplasia and transplanted them into immunodeficient mice. We treated some mice with a FGFR inhibitor after the transplantation. RESULTS: Xenografting the hiPSC-derived cartilage reproduced human growth plate cartilage consisting of zones of resting, proliferating, prehypertrophic and hypertrophic chondrocytes and bone in immunodeficient mice. Immunohistochemistry of xenografts using anti-human nuclear antigen antibody indicated that all chondrocytes in growth plate cartilage were human, whereas bone was composed of human and mouse cells. The pathology of small hypertrophic chondrocytes due to up-regulated FGFR3 signaling in FGFR3 skeletal dysplasia was recapitulated in growth plate cartilage formed in the xenografts of patient-specific hiPSC-derived cartilage. The mean diameters of hypertrophic chondrocytes between wild type and thanatophoric dysplasia were significantly different (95% CI: 13.2-26.9; n = 4 mice, one-way analysis of variance (ANOVA)). The pathology was corrected by systemic administration of a FGFR inhibitor to the mice. CONCLUSION: The patient-specific growth plate cartilage xenograft model for FGFR3 skeletal dysplasia indicated recapitulation of pathology and effectiveness of a FGFR inhibitor for treatment and warrants more study for its usefulness to study disease pathology and drug testing.


Assuntos
Cartilagem/patologia , Lâmina de Crescimento/patologia , Mutação , Osteocondrodisplasias/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Animais , Cartilagem/metabolismo , Ciclo Celular , Diferenciação Celular , Proliferação de Células , Modelos Animais de Doenças , Lâmina de Crescimento/metabolismo , Xenoenxertos , Camundongos , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais
13.
Osteoarthritis Cartilage ; 25(7): 1132-1142, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28323137

RESUMO

OBJECTIVE: The role of Snorc, a novel cartilage specific transmembrane proteoglycan, was studied during skeletal development using two Snorc knockout mouse models. Hypothesizing that Snorc, like the other transmembrane proteoglycans, may be a coreceptor, we also studied its interaction with growth factors. METHODS: Skeletal development was studied in wild type (WT) and Snorc knockout mice during postnatal development by whole mount staining, X-ray imaging, histomorphometry, immunohistochemistry and qRT-PCR. Snorc promoter activity was studied by applying the LacZ reporter expressed by the targeting construct. Slot blot binding and cell proliferation assays were used to study the interaction of Snorc with several growth factors. RESULTS: Snorc expression was localized in the knee epiphyses especially to the prehypertrophic chondrocytes delineating the cartilage canals and secondary ossification center (SOC). Snorc was demonstrated to have a glycosaminoglycan independent affinity to FGF2 and it inhibited FGF2 dependent cell growth of C3H101/2 cells. In Snorc deficient mice, SOCs in knee epiphyses were smaller, and growth plate (GP) maturation was disturbed, but total bone length was not affected. Central proliferative and hypertrophic zones were enlarged with higher extracellular matrix (ECM) volume and rounded chondrocyte morphology at postnatal days P10 and P22. Increased levels of Ihh and Col10a1, and reduced Mmp13 mRNA expression were observed at P10. CONCLUSIONS: These findings suggest a role of Snorc in regulation of chondrocyte maturation and postnatal endochondral ossification. The interaction identified between recombinant Snorc core protein and FGF2 suggest functions related to FGF signaling.


Assuntos
Condrócitos/fisiologia , Proteínas de Membrana/deficiência , Osteogênese/fisiologia , Proteoglicanas/deficiência , Joelho de Quadrúpedes/fisiologia , Animais , Ossos da Extremidade Inferior/crescimento & desenvolvimento , Proliferação de Células/fisiologia , Células Cultivadas , Condrogênese/fisiologia , Epífises/crescimento & desenvolvimento , Epífises/metabolismo , Epífises/fisiologia , Feminino , Fator 2 de Crescimento de Fibroblastos/fisiologia , Genótipo , Masculino , Proteínas de Membrana/metabolismo , Camundongos Knockout , Proteoglicanas/metabolismo , Proteoglicanas/fisiologia , RNA Mensageiro/metabolismo
14.
Proc Natl Acad Sci U S A ; 111(23): 8482-7, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24850862

RESUMO

The pathogenesis of cleidocranial dysplasia (CCD) as well as the specific role of core binding factor ß (Cbfß) and the Runt-related transcription factor (RUNX)/Cbfß complex in postnatal skeletogenesis remain unclear. We demonstrate that Cbfß ablation in osteoblast precursors, differentiating chondrocytes, osteoblasts, and odontoblasts via Osterix-Cre, results in severe craniofacial dysplasia, skeletal dysplasia, abnormal teeth, and a phenotype recapitulating the clinical features of CCD. Cbfß(f/f)Osterix-Cre mice have fewer proliferative and hypertrophic chondrocytes, fewer osteoblasts, and almost absent trabecular bone, indicating that Cbfß may maintain trabecular bone formation through its function in hypertrophic chondrocytes and osteoblasts. Cbfß(f/f)Collagen, type 1, alpha 1 (Col1α1)-Cre mice show decreased bone mineralization and skeletal deformities, but no radical deformities in teeth, mandibles, or cartilage, indicating that osteoblast lineage-specific ablation of Cbfß results in milder bone defects and less resemblance to CCD. Activating transcription factor 4 (Atf4) and Osterix protein levels in both mutant mice are dramatically reduced. ChIP assays show that Cbfß directly associates with the promoter regions of Atf4 and Osterix. Our data further demonstrate that Cbfß highly up-regulates the expression of Atf4 at the transcriptional regulation level. Overall, our genetic dissection approach revealed that Cbfß plays an indispensable role in postnatal skeletal development and homeostasis in various skeletal cell types, at least partially by up-regulating the expression of Atf4 and Osterix. It also revealed that CCD may result from functional defects of the Runx2/Cbfß heterodimeric complex in various skeletal cells. These insights into the role of Cbfß in postnatal skeletogenesis and CCD pathogenesis may assist in the development of new therapies for CCD and osteoporosis.


Assuntos
Condrócitos/fisiologia , Displasia Cleidocraniana/fisiopatologia , Subunidade beta de Fator de Ligação ao Core/fisiologia , Osteoblastos/fisiologia , Osteogênese/fisiologia , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Células Cultivadas , Condrócitos/metabolismo , Displasia Cleidocraniana/genética , Displasia Cleidocraniana/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade beta de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Microscopia de Fluorescência , Osteoblastos/metabolismo , Osteogênese/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Multimerização Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Crânio/citologia , Crânio/metabolismo , Fator de Transcrição Sp7 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Biochim Biophys Acta ; 1840(7): 2112-22, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24637075

RESUMO

BACKGROUND: Choline kinase has three isoforms encoded by the genes Chka and Chkb. Inactivation of Chka in mice results in embryonic lethality, whereas Chkb(-/-) mice display neonatal forelimb bone deformations. METHODS: To understand the mechanisms underlying the bone deformations, we compared the biology and biochemistry of bone formation from embryonic to young adult wild-type (WT) and Chkb(-/-) mice. RESULTS: The deformations are specific to the radius and ulna during the late embryonic stage. The radius and ulna of Chkb(-/-) mice display expanded hypertrophic zones, unorganized proliferative columns in their growth plates, and delayed formation of primary ossification centers. The differentiation of chondrocytes of Chkb(-/-) mice was impaired, as was chondrocyte proliferation and expression of matrix metalloproteinases 9 and 13. In chondrocytes from Chkb(-/-) mice, phosphatidylcholine was slightly lower than in WT mice whereas the amount of phosphocholine was decreased by approximately 75%. In addition, the radius and ulna from Chkb(-/-) mice contained fewer osteoclasts along the cartilage/bone interface. CONCLUSIONS: Chkb has a critical role in the normal embryogenic formation of the radius and ulna in mice. GENERAL SIGNIFICANCE: Our data indicate that choline kinase beta plays an important role in endochondral bone formation by modulating growth plate physiology.


Assuntos
Diferenciação Celular/genética , Colina Quinase/genética , Lâmina de Crescimento/crescimento & desenvolvimento , Osteogênese/genética , Animais , Colina Quinase/metabolismo , Condrócitos/enzimologia , Embrião de Mamíferos/enzimologia , Desenvolvimento Embrionário/genética , Membro Anterior/embriologia , Membro Anterior/enzimologia , Membro Anterior/crescimento & desenvolvimento , Lâmina de Crescimento/enzimologia , Humanos , Camundongos , Camundongos Knockout , Fosfatidilcolinas/metabolismo
16.
Clin Cases Miner Bone Metab ; 12(2): 202-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26604951

RESUMO

BACKGROUND: Osteogenesis Imperfecta (OI) is an heritable systemic disorder of connective tissue due to different sequence variants in genes affecting both the synthesis of type I collagen and osteoblast function. Dominant and recessive inheritance is recognized. Approximately 90% of the OI cases are due to mutations in COL1A1/A2 genes. We clinically and radiologically describes an adult male with type III osteogenesis imperfecta who presents a rare bone dysplasia termed bulbous epiphyseal deformity in association with popcorn calcifications. Popcorn calcifications may occur with bulbous epiphyseal deformity or independently. METHODS: Molecular analysis was performed for COL1A1, COL1A2, LEPRE1 and WNT1 genes. RESULTS: An uncommon COL1A1 mutation was identified. Clinical and radiological exams confirmed a distinctive bulbous epiphyseal deformity with popcorn calcifications in distal femurs. We have identified four additional OI patients reported in current literature, whose X-rays show bulbous epiphyseal deformity related to mutations in CR-TAP, LEPRE1 and WNT1 genes. CONCLUSION: The mutation identified here had been previously described twice in OI patients and no previous correlation with bulbous epiphyseal deformity was described. The occurrence of this bone dysplasia focuses attention on alterations in normal growth plate differentiation and the subsequent effect on endochondral bone formation in OI.

17.
Front Bioeng Biotechnol ; 12: 1356135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38600948

RESUMO

Introduction: Developmental engineering based on endochondral ossification has been proposed as a potential strategy for repairing of critical bone defects. Bone development is driven by growth plate-mediated endochondral ossification. Under physiological conditions, growth plate chondrocytes undergo compressive forces characterized by micro-mechanics, but the regulatory effect of micro-mechanical loading on endochondral bone formation has not been investigated. Methods: In this study, a periodic static compression (PSC) model characterized by micro-strain (with 0.5% strain) was designed to clarify the effects of biochemical/mechanical cues on endochondral bone formation. Hydrogel scaffolds loaded with bone marrow mesenchymal stem cells (BMSCs) were incubated in proliferation medium or chondrogenic medium, and PSC was performed continuously for 14 or 28 days. Subsequently, the scaffold pretreated for 28 days was implanted into rat femoral muscle pouches and femoral condylar defect sites. The chondrogenesis and bone defect repair were evaluated 4 or 10 weeks post-operation. Results: The results showed that PSC stimulation for 14 days significantly increased the number of COL II positive cells in proliferation medium. However, the chondrogenic efficiency of BMSCs was significantly improved in chondrogenic medium, with or without PSC application. The induced chondrocytes (ichondrocytes) spontaneously underwent hypertrophy and maturation, but long-term mechanical stimulation (loading for 28 days) significantly inhibited hypertrophy and mineralization in ichondrocytes. In the heterotopic ossification model, no chondrocytes were found and no significant difference in terms of mineral deposition in each group; However, 4 weeks after implantation into the femoral defect site, all scaffolds that were subjected to biochemical/mechanical cues, either solely or synergistically, showed typical chondrocytes and endochondral bone formation. In addition, simultaneous biochemical induction/mechanical loading significantly accelerated the bone regeneration. Discussion: Our findings suggest that microstrain mechanics, biochemical cues, and in vivo microenvironment synergistically regulate the differentiation fate of BMSCs. Meanwhile, this study shows the potential of micro-strain mechanics in the treatment of critical bone defects.

18.
Physiol Genomics ; 45(19): 917-23, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23943855

RESUMO

Osterix (Osx) is essential for both intramembranous or endochondral bone formation. Osteoblast-specific ablation of Osx using Col1α1-Cre resulted in osteopenia, because of impaired osteoblast differentiation in adult mice. Since Osx is also known to be expressed in chondrocytes, we evaluated the role of Osx expressed in chondrocytes by examining the skeletal phenotype of mice with conditional disruption of Osx in Col2α1-expressing chondrocytes. Surprisingly, Cre-positive mice that were homozygous for Osx floxed alleles died after birth. Alcian blue and alizarin red staining revealed that the lengths of skeleton, femur, and vertebrae were reduced by 21, 26, and 14% (P < 0.01), respectively, in the knockout (KO) compared with wild-type mice. To determine if haploid insufficiency of Osx in chondrocytes influenced postnatal skeletal growth, we compared skeletal phenotype of floxed heterozygous mice that were Cre-positive or Cre-negative. Body length was reduced by 8% (P < 0.001), and areal BMD of total body, femur, and tibia was reduced by 5, 7, and 8% (P < 0.05), respectively, in mice with conditional disruption of one allele of Osx in chondrocytes. Micro-CT showed reduced cortical volumetric bone mineral density and trabecular bone volume to total volume in the femurs of Osx(flox/+);col2α1-Cre mice. Histological analysis revealed that the impairment of longitudinal growth was associated with disrupted growth plates in the Osx(flox/+);col2α1-Cre mice. Primary chondrocytes isolated from KO embryos showed reduced expression of chondral ossification markers but elevated expression of chondrogenesis markers. Our findings indicate that Osx expressed in chondrocytes regulates bone growth in part by regulating chondrocyte hypertrophy.


Assuntos
Desenvolvimento Ósseo/genética , Condrócitos/metabolismo , Condrócitos/patologia , Haploinsuficiência/genética , Fatores de Transcrição/genética , Absorciometria de Fóton , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Calcificação Fisiológica/genética , Fêmur/diagnóstico por imagem , Fêmur/patologia , Deleção de Genes , Hipertrofia , Camundongos , Camundongos Knockout , Especificidade de Órgãos/genética , Fator de Transcrição Sp7
19.
Am J Transl Res ; 15(6): 4020-4032, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37434855

RESUMO

BACKGROUND: The type X collagen gene (Col10a1) is a signature gene of hypertrophic chondrocytes that are known as the main engine of long bone growth. Multiple transcription factors (TFs), including myocyte enhancer factor 2A (Mef2a), have previously been identified by in silico analysis as potential Col10al gene regulators. OBJECTIVES: In this study, we aimed to investigate the correlation between Mef2a and Col10a1 expression and the possible effects on chondrocyte proliferation and hypertrophic differentiation in vitro. METHODS: First, Mef2a expression in proliferating and hypertrophic chondrocytes were detected by quantitative real-time PCR (qRT-PCR) and Western blotting in two chondrocytic models, ATDC5 and MCT cells, as well as in mouse chondrocytes in situ. Transfection with Mef2a small interfering fragments or Mef2a overexpression plasmids in the above chondrocytic models were performed to determine how Mef2a knockdown or overexpression may influence Col10a1 expression. The binding between Mef2a and its putative binding site within the 150 bp Col10a1 cis-enhancer which was evaluated by the dual luciferase reporter assay. The effect of Mef2a on chondrocyte differentiation was determined by examining the chondrogenic marker gene expression by qRT-PCR and by alcian blue, alkaline phosphatase (ALP), and alizarin red staining of the ATDC5 cells stably knocked down by Mef2a. RESULTS: The expression of Mef2a in hypertrophic chondrocytes was significantly higher than that in proliferative chondrocytes in both chondrocytic models as well as in mouse chondrocytes in situ. Interference with Mef2a caused decreased Col10a1 expression, while overexpression of Mef2a upregulated Col10a1. The result of the dual luciferase reporter assay showed that Mef2a enhanced Col10a1 gene enhancer activity via its putative Mef2a binding site. For the staining of ATDC5 stable cell lines, although no significant differences were seen in ALP staining, significantly weaker alcian blue staining intensity was noticed in Mef2a knockdown stable cell lines compared to the control cells at day 21, while slightly weaker alizarin red staining was seen in the stable cell lines at days 14 and 21. Correspondingly, we detected decreased runt-related transcription factor 2 (Runx2), increased SRY-box transcription factor 9 (Sox9), as well as differential expression of other chondrogenic markers in ATDC5 stable cell lines compared with the controls. CONCLUSIONS: In conclusion, our results support that Mef2a upregulates Col10a1 expression possibly by interaction with its cis-enhancer. Altered levels of Mef2a affects the expression of chondrogenic marker genes, such as Runx2 and Sox9, but may only play an insignificant role during chondrocyte proliferation and maturation.

20.
JBMR Plus ; 7(12): e10841, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38130768

RESUMO

GαS, the stimulatory G protein α-subunit that raises intracellular cAMP levels by activating adenylyl cyclase, plays a vital role in bone development, maintenance, and remodeling. Previously, using transgenic mice overexpressing GαS in osteoblasts (GS-Tg), we demonstrated the influence of osteoblast GαS level on osteogenesis, bone turnover, and skeletal responses to hyperparathyroidism. To further investigate whether alterations in GαS levels affect endochondral bone repair, a postnatal bone regenerative process that recapitulates embryonic bone development, we performed stabilized tibial osteotomy in male GS-Tg mice at 8 weeks of age and examined the progression of fracture healing by micro-CT, histomorphometry, and gene expression analysis over a 4-week period. Bone fractures from GS-Tg mice exhibited diminished cartilage formation at the time of peak soft callus formation at 1 week post-fracture followed by significantly enhanced callus mineralization and new bone formation at 2 weeks post-fracture. The opposing effects on chondrogenesis and osteogenesis were validated by downregulation of chondrogenic markers and upregulation of osteogenic markers. Histomorphometric analysis at times of increased bone formation (2 and 3 weeks post-fracture) revealed excess fibroblast-like cells on newly formed woven bone surfaces and elevated osteocyte density in GS-Tg fractures. Coincident with enhanced callus mineralization and bone formation, GS-Tg mice showed elevated active ß-catenin and Wntless proteins in osteoblasts at 2 weeks post-fracture, further substantiated by increased mRNA encoding various canonical Wnts and Wnt target genes, suggesting elevated osteoblastic Wnt secretion and Wnt/ß-catenin signaling. The GS-Tg bony callus at 4 weeks post-fracture exhibited greater mineral density and decreased polar moment of inertia, resulting in improved material stiffness. These findings highlight that elevated GαS levels increase Wnt signaling, conferring an increased osteogenic differentiation potential at the expense of chondrogenic differentiation, resulting in improved mechanical integrity. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA