Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.392
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(4): e2214175120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36649419

RESUMO

Copper is distinctive in electrocatalyzing reduction of CO2 into various energy-dense forms, but it often suffers from limited product selectivity including ethanol in competition with ethylene. Here, we describe systematically designed, bimetallic electrocatalysts based on copper/gold heterojunctions with a faradaic efficiency toward ethanol of 60% at currents in excess of 500 mA cm-2. In the modified catalyst, the ratio of ethanol to ethylene is enhanced by a factor of 200 compared to copper catalysts. Analysis by ATR-IR measurements under operating conditions, and by computational simulations, suggests that reduction of CO2 at the copper/gold heterojunction is dominated by generation of the intermediate OCCOH*. The latter is a key contributor in the overall, asymmetrical electrohydrogenation of CO2 giving ethanol rather than ethylene.

2.
Proc Natl Acad Sci U S A ; 120(11): e2218987120, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36877842

RESUMO

Selective electroreduction of carbon dioxide (CO2RR) into ethanol at an industrially relevant current density is highly desired. However, it is challenging because the competing ethylene production pathway is generally more thermodynamically favored. Herein, we achieve a selective and productive ethanol production over a porous CuO catalyst that presents a high ethanol Faradaic efficiency (FE) of 44.1 ± 1.0% and an ethanol-to-ethylene ratio of 1.2 at a large ethanol partial current density of 501.0 ± 15.0 mA cm-2, in addition to an extraordinary FE of 90.6 ± 3.4% for multicarbon products. Intriguingly, we found a volcano-shaped relationship between ethanol selectivity and nanocavity size of porous CuO catalyst in the range of 0 to 20 nm. Mechanistic studies indicate that the increased coverage of surface-bounded hydroxyl species (*OH) associated with the nanocavity size-dependent confinement effect contributes to the remarkable ethanol selectivity, which preferentially favors the *CHCOH hydrogenation to *CHCHOH (ethanol pathway) via yielding the noncovalent interaction. Our findings provide insights in favoring the ethanol formation pathway, which paves the path toward rational design of ethanol-oriented catalysts.

3.
Proc Natl Acad Sci U S A ; 120(23): e2222096120, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252989

RESUMO

Rational design and synthesis of high-performance electrocatalysts for ethanol oxidation reaction (EOR) is crucial to large-scale commercialization of direct ethanol fuel cells, but it is still an incredible challenge. Herein, a unique Pd metallene/Ti3C2Tx MXene (Pdene/Ti3C2Tx)-supported electrocatalyst is constructed via an in-situ growth approach for high-efficiency EOR. The resulting Pdene/Ti3C2Tx catalyst achieves an ultrahigh mass activity of 7.47 A mgPd-1 under alkaline condition, as well as high tolerance to CO poisoning. In situ attenuated total reflection-infrared spectroscopy studies combined with density functional theory calculations reveal that the excellent EOR activity of Pdene/Ti3C2Tx catalyst is attributed to the unique and stable interfaces which reduce the reaction energy barrier of *CH3CO intermediate oxidation and facilitate oxidative removal of CO poisonous species by increasing the Pd-OH binding strength.

4.
Proc Natl Acad Sci U S A ; 120(50): e2311149120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38064508

RESUMO

Zinc-nitrate batteries can integrate energy supply, ammonia electrosynthesis, and sewage disposal into one electrochemical device. However, current zinc-nitrate batteries still severely suffer from the limited energy density and poor rechargeability. Here, we report the synthesis of tetraphenylporphyrin (tpp)-modified heterophase (amorphous/crystalline) rhodium-copper alloy metallenes (RhCu M-tpp). Using RhCu M-tpp as a bifunctional catalyst for nitrate reduction reaction (NO3RR) and ethanol oxidation reaction in neutral solution, a highly rechargeable and low-overpotential zinc-nitrate/ethanol battery is successfully constructed, which exhibits outstanding energy density of 117364.6 Wh kg-1cat, superior rate capability, excellent cycling stability of ~400 cycles, and potential ammonium acetate production. Ex/in situ experimental studies and theoretical calculations reveal that there is a molecule-metal relay catalysis in NO3RR over RhCu M-tpp that significantly facilitates the ammonia selectivity and reaction kinetics via a low energy barrier pathway. This work provides an effective design strategy of multifunctional metal-based catalysts toward the high-performance zinc-based hybrid energy systems.

5.
J Neurosci ; 44(4)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38050120

RESUMO

The insular cortex (IC) integrates sensory and interoceptive cues to inform downstream circuitry executing adaptive behavioral responses. The IC communicates with areas involved canonically in stress and motivation. IC projections govern stress and ethanol recruitment of bed nucleus of the stria terminalis (BNST) activity necessary for the emergence of negative affective behaviors during alcohol abstinence. Here, we assess the impact of the chronic drinking forced abstinence (CDFA) volitional home cage ethanol intake paradigm on synaptic and excitable properties of IC neurons that project to the BNST (IC→BNST). Using whole-cell patch-clamp electrophysiology, we investigated IC→BNST circuitry 24 h or 2 weeks following forced abstinence (FA) in female C57BL6/J mice. We find that IC→BNST cells are transiently more excitable following acute ethanol withdrawal. In contrast, in vivo ethanol exposure via intraperitoneal injection, ex vivo via ethanol wash, and acute FA from a natural reward (sucrose) all failed to alter excitability. In situ hybridization studies revealed that at 24 h post FA BK channel mRNA expression is reduced in IC. Further, pharmacological inhibition of BK channels mimicked the 24 h FA phenotype, while BK activation was able to decrease AP firing in control and 24 h FA subjects. All together these data suggest a novel mechanism of homeostatic plasticity that occurs in the IC→BNST circuitry following chronic drinking.


Assuntos
Etanol , Núcleos Septais , Humanos , Camundongos , Animais , Feminino , Etanol/farmacologia , Córtex Insular , Núcleos Septais/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Neurônios/fisiologia
6.
Plant J ; 118(4): 1054-1070, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308388

RESUMO

Alcohol dehydrogenases (ADHs) are a group of zinc-binding enzymes belonging to the medium-length dehydrogenase/reductase (MDR) protein superfamily. In plants, these enzymes fulfill important functions involving the reduction of toxic aldehydes to the corresponding alcohols (as well as catalyzing the reverse reaction, i.e., alcohol oxidation; ADH1) and the reduction of nitrosoglutathione (GSNO; ADH2/GSNOR). We investigated and compared the structural and biochemical properties of ADH1 and GSNOR from Arabidopsis thaliana. We expressed and purified ADH1 and GSNOR and determined two new structures, NADH-ADH1 and apo-GSNOR, thus completing the structural landscape of Arabidopsis ADHs in both apo- and holo-forms. A structural comparison of these Arabidopsis ADHs revealed a high sequence conservation (59% identity) and a similar fold. In contrast, a striking dissimilarity was observed in the catalytic cavity supporting substrate specificity and accommodation. Consistently, ADH1 and GSNOR showed strict specificity for their substrates (ethanol and GSNO, respectively), although both enzymes had the ability to oxidize long-chain alcohols, with ADH1 performing better than GSNOR. Both enzymes contain a high number of cysteines (12 and 15 out of 379 residues for ADH1 and GSNOR, respectively) and showed a significant and similar responsivity to thiol-oxidizing agents, indicating that redox modifications may constitute a mechanism for controlling enzyme activity under both optimal growth and stress conditions.


Assuntos
Álcool Desidrogenase , Proteínas de Arabidopsis , Arabidopsis , Oxirredução , Arabidopsis/enzimologia , Arabidopsis/genética , Álcool Desidrogenase/metabolismo , Álcool Desidrogenase/genética , Álcool Desidrogenase/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Especificidade por Substrato , S-Nitrosoglutationa/metabolismo , Sequência de Aminoácidos , Etanol/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(11): e2112109119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35263231

RESUMO

SignificanceDirect ethanol fuel cells are attracting growing attention as portable power sources due to their advantages such as higher mass-energy density than hydrogen and less toxicity than methanol. However, it is challenging to achieve the complete electrooxidation to generate 12 electrons per ethanol, resulting in a low fuel utilization efficiency. This manuscript reports the complete ethanol electrooxidation by engineering efficient catalysts via single-atom modification. The combined electrochemical measurements, in situ characterization, and density functional theory calculations unravel synergistic effects of single Rh atoms and Pt nanocubes and identify reaction pathways leading to the selective C-C bond cleavage to oxidize ethanol to CO2. This study provides a unique single-atom approach to tune the activity and selectivity toward complicated electrocatalytic reactions.

8.
Proc Natl Acad Sci U S A ; 119(25): e2122477119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35700362

RESUMO

Alcohol intoxication at early ages is a risk factor for the development of addictive behavior. To uncover neuronal molecular correlates of acute ethanol intoxication, we used stable-isotope-labeled mice combined with quantitative mass spectrometry to screen more than 2,000 hippocampal proteins, of which 72 changed synaptic abundance up to twofold after ethanol exposure. Among those were mitochondrial proteins and proteins important for neuronal morphology, including MAP6 and ankyrin-G. Based on these candidate proteins, we found acute and lasting molecular, cellular, and behavioral changes following a single intoxication in alcohol-naïve mice. Immunofluorescence analysis revealed a shortening of axon initial segments. Longitudinal two-photon in vivo imaging showed increased synaptic dynamics and mitochondrial trafficking in axons. Knockdown of mitochondrial trafficking in dopaminergic neurons abolished conditioned alcohol preference in Drosophila flies. This study introduces mitochondrial trafficking as a process implicated in reward learning and highlights the potential of high-resolution proteomics to identify cellular mechanisms relevant for addictive behavior.


Assuntos
Intoxicação Alcoólica , Neurônios Dopaminérgicos , Etanol , Hipocampo , Proteínas do Tecido Nervoso , Intoxicação Alcoólica/metabolismo , Intoxicação Alcoólica/patologia , Animais , Comportamento Aditivo/induzido quimicamente , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Relação Dose-Resposta a Droga , Drosophila melanogaster , Etanol/administração & dosagem , Etanol/toxicidade , Técnicas de Silenciamento de Genes , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transporte Proteico/efeitos dos fármacos
9.
Proc Natl Acad Sci U S A ; 119(46): e2210462119, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343256

RESUMO

Alcohol intoxication can impact learning and this may contribute to the development of problematic alcohol use. In alcohol (ethanol)-induced state-dependent learning (SDL), information learned while an animal is intoxicated is recalled more effectively when the subject is tested while similarly intoxicated than if tested while not intoxicated. When Caenorhabditis elegans undergoes olfactory learning (OL) while intoxicated, the learning becomes state dependent such that recall of OL is only apparent if the animals are tested while intoxicated. We found that two genes known to be required for signal integration, the secreted peptide HEN-1 and its receptor tyrosine kinase, SCD-2, are required for SDL. Expression of hen-1 in the ASER neuron and scd-2 in the AIA neurons was sufficient for their functions in SDL. Optogenetic activation of ASER in the absence of ethanol during learning could confer ethanol state dependency, indicating that ASER activation is sufficient to signal ethanol intoxication to the OL circuit. To our surprise, ASER activation during testing did not substitute for ethanol intoxication, demonstrating that the effects of ethanol on learning and recall rely on distinct signals. Additionally, intoxication-state information could be added to already established OL, but state-dependent OL did not lose state information when the intoxication signal was removed. Finally, dopamine is required for state-dependent OL, and we found that the activation of ASER cannot bypass this requirement. Our findings provide a window into the modulation of learning by ethanol and suggest that ethanol acts to modify learning using mechanisms distinct from those used during memory access.


Assuntos
Intoxicação Alcoólica , Alcoolismo , Proteínas de Caenorhabditis elegans , Neuropeptídeos , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neuropeptídeos/metabolismo , Etanol/metabolismo , Proteínas Tirosina Quinases/metabolismo
10.
Genomics ; 116(2): 110811, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38387766

RESUMO

Sugarcane molasses is one of the main raw materials for bioethanol production, and Saccharomyces cerevisiae is the major biofuel-producing organism. In this study, a batch fermentation model has been used to examine ethanol titers of deletion mutants for all yeast nonessential genes in this yeast genome. A total of 42 genes are identified to be involved in ethanol production during fermentation of sugarcane molasses. Deletion mutants of seventeen genes show increased ethanol titers, while deletion mutants for twenty-five genes exhibit reduced ethanol titers. Two MAP kinases Hog1 and Kss1 controlling the high osmolarity and glycerol (HOG) signaling and the filamentous growth, respectively, are negatively involved in the regulation of ethanol production. In addition, twelve genes involved in amino acid metabolism are crucial for ethanol production during fermentation. Our findings provide novel targets and strategies for genetically engineering industrial yeast strains to improve ethanol titer during fermentation of sugarcane molasses.


Assuntos
Saccharomycetales , Saccharum , Fermentação , Etanol/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharum/genética , Saccharum/metabolismo , Saccharomycetales/metabolismo , Sistema de Sinalização das MAP Quinases , Melaço , Aminoácidos
11.
Nano Lett ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856118

RESUMO

Copper-based catalysts have been attracting increasing attention for CO2 electroreduction into value-added multicarbon chemicals. However, most Cu-based catalysts are designed for ethylene production, while ethanol production with high Faradaic efficiency at high current density still remains a great challenge. Herein, Cu clusters supported on single-atom Cu dispersed nitrogen-doped carbon (Cux/Cu-N/C) show ethanol Faradaic efficiency of ∼40% and partial current density of ∼350 mA cm-2. Quasi in situ X-ray photoelectron spectroscopy and operando X-ray absorption spectroscopy results suggest the generation of surface asymmetrical sites of Cu+ and Cu0 as well as Cu clusters by electrochemical reduction and reconstruction during the CO2 electroreduction process. Density functional theory calculations indicate that the interaction between Cu clusters and the Cu-N/C support enhances *CO adsorption, facilitates the C-C coupling step, and favors the hydrogenation rather than dehydroxylation of the critical intermediate *CHCOH toward ethanol in the bifurcation.

12.
J Neurosci ; 43(12): 2210-2220, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36750369

RESUMO

Ethanol tolerance is the first type of behavioral plasticity and neural plasticity that is induced by ethanol intake, and yet its molecular and circuit bases remain largely unexplored. Here, we characterize the following three distinct forms of ethanol tolerance in male Drosophila: rapid, chronic, and repeated. Rapid tolerance is composed of two short-lived memory-like states, one that is labile and one that is consolidated. Chronic tolerance, induced by continuous exposure, lasts for 2 d, induces ethanol preference, and hinders the development of rapid tolerance through the activity of histone deacetylases (HDACs). Unlike rapid tolerance, chronic tolerance is independent of the immediate early gene Hr38/Nr4a Chronic tolerance is suppressed by the sirtuin HDAC Sirt1, whereas rapid tolerance is enhanced by Sirt1 Moreover, rapid and chronic tolerance map to anatomically distinct regions of the mushroom body learning and memory centers. Chronic tolerance, like long-term memory, is dependent on new protein synthesis and it induces the kayak/c-fos immediate early gene, but it depends on CREB signaling outside the mushroom bodies, and it does not require the Radish GTPase. Thus, chronic ethanol exposure creates an ethanol-specific memory-like state that is molecularly and anatomically different from other forms of ethanol tolerance.SIGNIFICANCE STATEMENT The pattern and concentration of initial ethanol exposure causes operationally distinct types of ethanol tolerance to form. We identify separate molecular and neural circuit mechanisms for two forms of ethanol tolerance, rapid and chronic. We also discover that chronic tolerance forms an ethanol-specific long-term memory-like state that localizes to learning and memory circuits, but it is different from appetitive and aversive long-term memories. By contrast, rapid tolerance is composed of labile and consolidated short-term memory-like states. The multiple forms of ethanol memory-like states are genetically tractable for understanding how initial forms of ethanol-induced neural plasticity form a substrate for the longer-term brain changes associated with alcohol use disorder.


Assuntos
Alcoolismo , Proteínas de Drosophila , Animais , Masculino , Drosophila/metabolismo , Sirtuína 1/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Etanol/farmacologia , Alcoolismo/metabolismo , Corpos Pedunculados/metabolismo , Drosophila melanogaster/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
13.
Dev Biol ; 493: 89-102, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36368523

RESUMO

Ethanol is a known vertebrate teratogen that causes craniofacial defects as a component of fetal alcohol syndrome (FAS). Our results show that sea urchin embryos treated with ethanol similarly show broad skeletal patterning defects, potentially analogous to the defects associated with FAS. The sea urchin larval skeleton is a simple patterning system that involves only two cell types: the primary mesenchymal cells (PMCs) that secrete the calcium carbonate skeleton and the ectodermal cells that provide migratory, positional, and differentiation cues for the PMCs. Perturbations in RA biosynthesis and Hh signaling pathways are thought to be causal for the FAS phenotype in vertebrates. Surprisingly, our results indicate that these pathways are not functionally relevant for the teratogenic effects of ethanol in developing sea urchins. We found that developmental morphology as well as the expression of some ectodermal and PMC genes was delayed by ethanol exposure. Temporal transcriptome analysis revealed significant impacts of ethanol on signaling and metabolic gene expression, and a disruption in the timing of GRN gene expression that includes both delayed and precocious gene expression throughout the specification network. We conclude that the skeletal patterning perturbations in ethanol-treated embryos likely arise from a loss of temporal synchrony within and between the instructive and responsive tissues.


Assuntos
Etanol , Células-Tronco Mesenquimais , Animais , Etanol/toxicidade , Regulação da Expressão Gênica no Desenvolvimento , Ouriços-do-Mar , Ectoderma , Células-Tronco Mesenquimais/metabolismo , Embrião não Mamífero/metabolismo
14.
J Biol Chem ; 299(12): 105472, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979914

RESUMO

Preexposure to mild stress often improves cellular tolerance to subsequent severe stress. Severe ethanol stress (10% v/v) causes persistent and pronounced translation repression in Saccharomyces cerevisiae. However, it remains unclear whether preexposure to mild stress can mitigate translation repression in yeast cells under severe ethanol stress. We found that the translational activity of yeast cells pretreated with 6% (v/v) ethanol was initially significantly repressed under subsequent 10% ethanol but was then gradually restored even under severe ethanol stress. We also found that 10% ethanol caused the aggregation of Ded1, which plays a key role in translation initiation as a DEAD-box RNA helicase. Pretreatment with 6% ethanol led to the gradual disaggregation of Ded1 under subsequent 10% ethanol treatment in wild-type cells but not in fes1Δhsp104Δ cells, which are deficient in Hsp104 with significantly reduced capacity for Hsp70. Hsp104 and Hsp70 are key components of the bi-chaperone system that play a role in yeast protein quality control. fes1Δhsp104Δ cells did not restore translational activity under 10% ethanol, even after pretreatment with 6% ethanol. These results indicate that the regeneration of Ded1 through the bi-chaperone system leads to the gradual restoration of translational activity under continuous severe stress. This study provides new insights into the acquired tolerance of yeast cells to severe ethanol stress and the resilience of their translational activity.


Assuntos
RNA Helicases DEAD-box , Etanol , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Etanol/farmacologia , Biossíntese de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Neurobiol Dis ; 190: 106361, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992784

RESUMO

The prefrontal cortex is a crucial regulator of alcohol drinking, and dependence, and other behavioral phenotypes associated with AUD. Comprehensive identification of cell-type specific transcriptomic changes in alcohol dependence will improve our understanding of mechanisms underlying the excessive alcohol use associated with alcohol dependence and will refine targets for therapeutic development. We performed single nucleus RNA sequencing (snRNA-seq) and Visium spatial gene expression profiling on the medial prefrontal cortex (mPFC) obtained from C57BL/6 J mice exposed to the two-bottle choice-chronic intermittent ethanol (CIE) vapor exposure (2BC-CIE, defined as dependent group) paradigm which models phenotypes of alcohol dependence including escalation of alcohol drinking. Gene co-expression network analysis and differential expression analysis identified highly dysregulated co-expression networks in multiple cell types. Dysregulated modules and their hub genes suggest novel understudied targets for studying molecular mechanisms contributing to the alcohol dependence state. A subtype of inhibitory neurons was the most alcohol-sensitive cell type and contained a downregulated gene co-expression module; the hub gene for this module is Cpa6, a gene previously identified by GWAS to be associated with excessive alcohol consumption. We identified an astrocytic Gpc5 module significantly upregulated in the alcohol-dependent group. To our knowledge, there are no studies linking Cpa6 and Gpc5 to the alcohol-dependent phenotype. We also identified neuroinflammation related gene expression changes in multiple cell types, specifically enriched in microglia, further implicating neuroinflammation in the escalation of alcohol drinking. Here, we present a comprehensive atlas of cell-type specific alcohol dependence mediated gene expression changes in the mPFC and identify novel cell type-specific targets implicated in alcohol dependence.


Assuntos
Alcoolismo , Animais , Camundongos , Alcoolismo/genética , Doenças Neuroinflamatórias , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Córtex Pré-Frontal/metabolismo , Etanol/toxicidade
16.
Front Neuroendocrinol ; 71: 101094, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37558184

RESUMO

Sexually dimorphic effects of alcohol, following binge drinking, chronic intoxication, and withdrawal, are documented at the level of the transcriptome and in behavioral and physiological responses. The purpose of the current review is to update and to expand upon contributions of the endocrine system to alcohol drinking and withdrawal in females, with a focus on animal models. Steroids important in the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-adrenal axes, the reciprocal interactions between these axes, the effects of chronic alcohol use on steroid levels, and the genomic and rapid membrane-associated effects of steroids and neurosteroids in models of alcohol drinking and withdrawal are described. Importantly, comparison between males and females highlight some divergent effects of sex- and stress-steroids on alcohol drinking- and withdrawal-related behaviors, and the distinct differences in response emphasize the importance of considering sex in the development of novel pharmacotherapies for the treatment of alcohol use disorder.


Assuntos
Consumo de Bebidas Alcoólicas , Alcoolismo , Masculino , Animais , Feminino , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Alcoolismo/tratamento farmacológico , Etanol/farmacologia , Esteroides , Modelos Animais de Doenças
17.
Eur J Neurosci ; 59(7): 1500-1518, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38185906

RESUMO

Discrete alcohol cues and contexts are relapse triggers for people with alcohol use disorder exerting particularly powerful control over behaviour when they co-occur. Here, we investigated the neural substrates subserving the capacity for alcohol-associated contexts to elevate responding to an alcohol-predictive conditioned stimulus (CS). Specifically, rats were trained in a distinct 'alcohol context' to respond by entering a fluid port during a discrete auditory CS that predicted the delivery of alcohol and were familiarized with a 'neutral context' wherein alcohol was never available. When conditioned CS responding was tested by presenting the CS without alcohol, we found that augmenting glutamatergic activity in the nucleus accumbens (NAc) shell by microinfusing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) reduced responding to an alcohol CS in an alcohol, but not neutral, context. Further, AMPA microinfusion robustly affected behaviour, attenuating the number, duration and latency of CS responses selectively in the alcohol context. Although dopaminergic inputs to the NAc shell were previously shown to be necessary for CS responding in an alcohol context, here, chemogenetic excitation of ventral tegmental area (VTA) dopamine neurons and their inputs to the NAc shell did not affect CS responding. Critically, chemogenetic excitation of VTA dopamine neurons affected feeding behaviour and elevated c-fos immunoreactivity in the VTA and NAc shell, validating the chemogenetic approach. These findings enrich our understanding of the substrates underlying Pavlovian responding for alcohol and reveal that the capacity for contexts to modulate responding to discrete alcohol cues is delicately underpinned by the NAc shell.


Assuntos
Sinais (Psicologia) , Núcleo Accumbens , Humanos , Ratos , Animais , Núcleo Accumbens/fisiologia , Ratos Long-Evans , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Etanol/farmacologia , Condicionamento Operante/fisiologia
18.
J Hepatol ; 80(3): 409-418, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37992972

RESUMO

BACKGROUND & AIMS: The long-term impact of alcohol-related public health policies (PHPs) on disease burden is unclear. We aimed to assess the association between alcohol-related PHPs and alcohol-related health consequences. METHODS: We conducted an ecological multi-national study including 169 countries. We collected data on alcohol-related PHPs from the WHO Global Information System of Alcohol and Health 2010. Data on alcohol-related health consequences between 2010-2019 were obtained from the Global Burden of Disease database. We classified PHPs into five items, including criteria for low, moderate, and strong PHP establishment. We estimated an alcohol preparedness index (API) using multiple correspondence analysis (0 lowest and 100 highest establishment). We estimated an incidence rate ratio (IRR) for outcomes according to API using adjusted multilevel generalized linear models with a Poisson family distribution. RESULTS: The median API in the 169 countries was 54 [IQR 34.9-76.8]. The API was inversely associated with alcohol use disorder (AUD) prevalence (IRR 0.13; 95% CI 0.03-0.60; p = 0.010), alcohol-associated liver disease (ALD) mortality (IRR 0.14; 95% CI 0.03-0.79; p = 0.025), mortality due to neoplasms (IRR 0.09; 95% CI 0.02-0.40; p = 0.002), alcohol-attributable hepatocellular carcinoma (HCC) (IRR 0.13; 95% CI 0.02-0.65; p = 0.014), and cardiovascular diseases (IRR 0.09; 95% CI 0.02-0.41; p = 0.002). The highest associations were observed in the Americas, Africa, and Europe. These associations became stronger over time, and AUD prevalence was significantly lower after 2 years, while ALD mortality and alcohol-attributable HCC incidence decreased after 4 and 8 years from baseline API assessment, respectively (p <0.05). CONCLUSIONS: The API is a valuable instrument to quantify the robustness of alcohol-related PHP establishment. Lower AUD prevalence and lower mortality related to ALD, neoplasms, alcohol-attributable HCC, and cardiovascular diseases were observed in countries with a higher API. Our results encourage the development and strengthening of alcohol-related policies worldwide. IMPACT AND IMPLICATIONS: We first developed an alcohol preparedness index, an instrument to assess the existence of alcohol-related public policies for each country. We then evaluated the long-term association of the country's alcohol preparedness index in 2010 with the burden of chronic liver disease, hepatocellular carcinoma, other neoplasms, and cardiovascular disease. The strengthening of alcohol-related public health policies could impact long-term mortality rates from cardiovascular disease, neoplasms, and liver disease. These conditions are the main contributors to the global burden of disease related to alcohol use. Over time, this association has not only persisted but also grown stronger. Our results expand the preliminary evidence regarding the importance of public health policies in controlling alcohol-related health consequences.


Assuntos
Alcoolismo , Carcinoma Hepatocelular , Doenças Cardiovasculares , Hepatopatias Alcoólicas , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/complicações , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/complicações , Hepatopatias Alcoólicas/patologia , Alcoolismo/complicações , Política Pública , Política de Saúde
19.
Biochem Biophys Res Commun ; 714: 149968, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38657445

RESUMO

BACKGROUND: Chronic alcohol enhances oxidative stress, but the temporal response of antioxidant genes in skeletal muscle following a binge drinking episode remains unknown. METHODS: Experiment 1: C57BL/6Hsd female mice received an IP injection of saline (CON; n = 39) or ethanol (ETOH; n = 39) (5 g/kg). Gastrocnemius muscles were collected from baseline (untreated; n = 3), CON (n = 3), and ETOH (n = 3) mice every 4 h for 48 h. Experiment 2: Gastrocnemius muscles were collected from control-fed (CON-FED; n = 17), control-fasted (CON-FAST; n = 18), or alcohol-fed (ETOH-FED; n = 18) mice every 4hrs for 20hrs after saline or ethanol (5 g/kg). RESULTS: EtOH enhanced Superoxide dismutase 1 (Sod1) and NADPH Oxidase 4 (Nox4) from 24 to 48hr after the binge, while Sod2 and Nox2 were suppressed. Nuclear factor erythroid-derived 2-like 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) increased 12hrs after intoxication. Cytochrome P450 oxidoreductase (Por), Heme oxygenase 1 (Ho1), Peroxiredoxin 6 (Prdx6), Glutamate-cysteine ligase catalytic subunit (Gclc), Glutamate-cysteine ligase modifier subunit (Gclm), and Glutathione-disulfide reductase (Gsr) were increased by ETOH starting 12-16hrs post-binge. Fasting had similar effects on Nrf2 compared to alcohol, but downstream targets of NRF2, including Por, Ho1, Gclc, and Gclm, were differentially altered with fasting and EtOH. CONCLUSION: These data suggest that acute alcohol intoxication induced markers of oxidative stress and antioxidant signaling through the NRF2 pathway and that there were effects of alcohol independent of a possible decrease in food intake caused by binge intoxication.


Assuntos
Antioxidantes , Consumo Excessivo de Bebidas Alcoólicas , Etanol , Músculo Esquelético , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Animais , Feminino , Camundongos , Antioxidantes/metabolismo , Etanol/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , NADPH Oxidase 4/metabolismo , NADPH Oxidase 4/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/genética
20.
BMC Plant Biol ; 24(1): 385, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724918

RESUMO

Waterlogging stress is one of the major abiotic stresses affecting the productivity and quality of many crops worldwide. However, the mechanisms of waterlogging tolerance are still elusive in barley. In this study, we identify key differentially expressed genes (DEGs) and differential metabolites (DM) that mediate distinct waterlogging tolerance strategies in leaf and root of two barley varieties with contrasting waterlogging tolerance under different waterlogging treatments. Transcriptome profiling revealed that the response of roots was more distinct than that of leaves in both varieties, in which the number of downregulated genes in roots was 7.41-fold higher than that in leaves of waterlogging sensitive variety after 72 h of waterlogging stress. We also found the number of waterlogging stress-induced upregulated DEGs in the waterlogging tolerant variety was higher than that of the waterlogging sensitive variety in both leaves and roots in 1 h and 72 h treatment. This suggested the waterlogging tolerant variety may respond more quickly to waterlogging stress. Meanwhile, phenylpropanoid biosynthesis pathway was identified to play critical roles in waterlogging tolerant variety by improving cell wall biogenesis and peroxidase activity through DEGs such as Peroxidase (PERs) and Cinnamoyl-CoA reductases (CCRs) to improve resistance to waterlogging. Based on metabolomic and transcriptomic analysis, we found the waterlogging tolerant variety can better alleviate the energy deficiency via higher sugar content, reduced lactate accumulation, and improved ethanol fermentation activity compared to the waterlogging sensitive variety. In summary, our results provide waterlogging tolerance strategies in barley to guide the development of elite genetic resources towards waterlogging-tolerant crop varieties.


Assuntos
Perfilação da Expressão Gênica , Hordeum , Metaboloma , Estresse Fisiológico , Transcriptoma , Hordeum/genética , Hordeum/fisiologia , Hordeum/metabolismo , Estresse Fisiológico/genética , Água/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA