Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.247
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Cell ; 184(1): 272-288.e11, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33378642

RESUMO

Comprehensively resolving neuronal identities in whole-brain images is a major challenge. We achieve this in C. elegans by engineering a multicolor transgene called NeuroPAL (a neuronal polychromatic atlas of landmarks). NeuroPAL worms share a stereotypical multicolor fluorescence map for the entire hermaphrodite nervous system that resolves all neuronal identities. Neurons labeled with NeuroPAL do not exhibit fluorescence in the green, cyan, or yellow emission channels, allowing the transgene to be used with numerous reporters of gene expression or neuronal dynamics. We showcase three applications that leverage NeuroPAL for nervous-system-wide neuronal identification. First, we determine the brainwide expression patterns of all metabotropic receptors for acetylcholine, GABA, and glutamate, completing a map of this communication network. Second, we uncover changes in cell fate caused by transcription factor mutations. Third, we record brainwide activity in response to attractive and repulsive chemosensory cues, characterizing multimodal coding for these stimuli.


Assuntos
Atlas como Assunto , Mapeamento Encefálico , Encéfalo/fisiologia , Caenorhabditis elegans/fisiologia , Neurônios/fisiologia , Software , Algoritmos , Pontos de Referência Anatômicos , Animais , Corpo Celular/fisiologia , Linhagem da Célula , Drosophila/fisiologia , Mutação/genética , Rede Nervosa/fisiologia , Fenótipo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Neurotransmissores/metabolismo , Olfato/fisiologia , Paladar/fisiologia , Fatores de Transcrição/metabolismo , Transgenes
2.
Plant J ; 117(3): 892-908, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37955978

RESUMO

Tetraspanins (TETs) are small transmembrane scaffold proteins that distribute proteins into highly organized microdomains, consisting of adaptors and signaling proteins, which play important roles in various biological events. In plants, understanding of tetraspanin is limited to the Arabidopsis TET genes' expression pattern and their function in leaf and root growth. Here, we comprehensively analyzed all rice tetraspanin (OsTET) family members, including their gene expression pattern, protein topology, and subcellular localization. We found that the core domain of OsTETs is conserved and shares a similar topology of four membrane-spanning domains with animal and plant TETs. OsTET genes are partially overlapping expressed in diverse tissue domains in vegetative and reproductive organs. OsTET proteins preferentially targeted the endoplasmic reticulum. Mutation analysis showed that OsTET5, OsTET6, OsTET9, and OsTET10 regulated plant height and tillering, and that OsTET13 controlled root growth in association with the jasmonic acid pathway. In summary, our work provides systematic new insights into the function of OsTETs in rice growth and development, and the data provides valuable resources for future research.


Assuntos
Arabidopsis , Oryza , Animais , Oryza/genética , Oryza/metabolismo , Tetraspaninas/genética , Tetraspaninas/metabolismo , Proteínas de Membrana/metabolismo , Plantas/metabolismo , Arabidopsis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
3.
EMBO Rep ; 24(10): e56475, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37603128

RESUMO

Drosophila ovarian germline stem cells (GSCs) are a powerful model for stem cell research. In this study, we use single-cell RNA sequencing (scRNA-seq), an RNAi screen and bioinformatic analysis, to identify genes involved in germ cell differentiation, including 34 genes with upregulated expression during early germ cell development and 19 genes that may regulate germ cell differentiation. Among these, a gene we have named eggplant (eggpl) is highly expressed in GSCs and downregulated in early daughter cells. RNAi knockdown of eggpl causes germ cell proliferation and differentiation defects. In flies fed a rich yeast diet, the expression of eggpl is significantly lower and knockdown or knockout of eggpl phenocopies a rich diet. In addition, eggpl knockdown suppresses the reduction in germ cell proliferation caused by inhibition of the insulin effector PI3K. These findings suggest that downregulation of eggpl links nutritional status to germ cell proliferation and differentiation. Collectively, this study provides new insights into the signaling networks that regulate early germ cell development and identifies eggpl as a key player in this process.


Assuntos
Proteínas de Drosophila , Solanum melongena , Animais , Drosophila/genética , Solanum melongena/genética , Solanum melongena/metabolismo , Proteínas de Drosophila/metabolismo , Diferenciação Celular/genética , Células Germinativas/metabolismo , Análise de Sequência de RNA , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
4.
Proteomics ; : e2300396, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38522031

RESUMO

The tooth serves as an exemplary model for developmental studies, encompassing epithelial-mesenchymal transition and cell differentiation. The essential factors and pathways identified in tooth development will help understand the natural development process and the malformations of mineralized tissues such as skeleton. The time-dependent proteomic changes were investigated through the proteomics of healthy human molars during embryonic stages, ranging from the cap-to-early bell stage. A comprehensive analysis revealed 713 differentially expressed proteins (DEPs) exhibiting five distinct temporal expression patterns. Through the application of weighted gene co-expression network analysis (WGCNA), 24 potential driver proteins of tooth development were screened, including CHID1, RAP1GDS1, HAPLN3, AKAP12, WLS, GSS, DDAH1, CLSTN1, AFM, RBP1, AGO1, SET, HMGB2, HMGB1, ANP32A, SPON1, FREM1, C8B, PRPS2, FCHO2, PPP1R12A, GPALPP1, U2AF2, and RCC2. Then, the proteomics and transcriptomics expression patterns of these proteins were further compared, complemented by single-cell RNA-sequencing (scRNA-seq). In summary, this study not only offers a wealth of information regarding the molecular intricacies of human embryonic epithelial and mesenchymal cell differentiation but also serves as an invaluable resource for future mechanistic inquiries into tooth development.

5.
BMC Genomics ; 25(1): 133, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38302866

RESUMO

BACKGROUND: WD40 proteins, which are highly prevalent in eukaryotes, play important roles in plant development and stress responses. However, systematic identification and exploration of WD40 proteins in tobacco have not yet been conducted. RESULTS: In this study, a total of 399 WD40 regulatory genes were identified in common tobacco (Nicotiana tabacum). Gene structure and motif analysis revealed structural and functional diversity among different clades of tobacco WD40 regulatory genes. The expansion of tobacco WD40 regulatory genes was mainly driven by segmental duplication and purifying selection. A potential regulatory network of NtWD40s suggested that NtWD40s might be regulated by miRNAs and transcription factors in various biological processes. Expression pattern analysis via transcriptome analysis and qRT-PCR revealed that many NtWD40s exhibited tissue-specific expression patterns and might be involved in various biotic and abiotic stresses. Furthermore, we have validated the critical role of NtTTG1, which was located in the nuclei of trichome cells, in enhancing the drought tolerance of tobacco plants. CONCLUSIONS: Our study provides comprehensive information to better understand the evolution of WD40 regulatory genes and their roles in different stress responses in tobacco.


Assuntos
Resistência à Seca , Nicotiana , Nicotiana/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Filogenia
6.
BMC Genomics ; 25(1): 497, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773372

RESUMO

BACKGROUND: Alfalfa (Medicago sativa L.) is the most cultivated forage legume around the world. Under a variety of growing conditions, forage yield in alfalfa is stymied by biotic and abiotic stresses including heat, salt, drought, and disease. Given the sessile nature of plants, they use strategies including, but not limited to, differential gene expression to respond to environmental cues. Transcription factors control the expression of genes that contribute to or enable tolerance and survival during periods of stress. Basic-leucine zipper (bZIP) transcription factors have been demonstrated to play a critical role in regulating plant growth and development as well as mediate the responses to abiotic stress in several species, including Arabidopsis thaliana, Oryza sativa, Lotus japonicus and Medicago truncatula. However, there is little information about bZIP transcription factors in cultivated alfalfa. RESULT: In the present study, 237 bZIP genes were identified in alfalfa from publicly available sequencing data. Multiple sequence alignments showed the presence of intact bZIP motifs in the identified sequences. Based on previous phylogenetic analyses in A. thaliana, alfalfa bZIPs were similarly divided and fell into 10 groups. The physico-chemical properties, motif analysis and phylogenetic study of the alfalfa bZIPs revealed high specificity within groups. The differential expression of alfalfa bZIPs in a suite of tissues indicates that bZIP genes are specifically expressed at different developmental stages in alfalfa. Similarly, expression analysis in response to ABA, cold, drought and salt stresses, indicates that a subset of bZIP genes are also differentially expressed and likely play a role in abiotic stress signaling and/or tolerance. RT-qPCR analysis on selected genes further verified these differential expression patterns. CONCLUSIONS: Taken together, this work provides a framework for the future study of bZIPs in alfalfa and presents candidate bZIPs involved in stress-response signaling.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Regulação da Expressão Gênica de Plantas , Medicago sativa , Filogenia , Estresse Fisiológico , Medicago sativa/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Simulação por Computador , Perfilação da Expressão Gênica , Biologia Computacional/métodos
7.
BMC Genomics ; 25(1): 20, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166654

RESUMO

Glycoside hydrolase family 1 (GH1) ß-glucosidases (BGLUs), are encoded by a large number of genes, which participate in the development and stress response of plants, particularly under biotic and abiotic stresses through the activation of phytohormones. However, there are few studies systematically analyzing stress or hormone-responsive BGLU genes in alfalfa. In this study, a total of 179 BGLU genes of the glycoside hydrolase family 1 were identified in the genome of alfalfa, and then were classified into five distinct clusters. Sequence alignments revealed several conserved and unique motifs among these MsBGLU proteins. Many cis-acting elements related to abiotic stresses and phytohormones were identified in the promoter of some MsBGLUs. Moreover, RNA-seq and RT-qPCR analyses showed that these MsBGLU genes exhibited distinct expression patterns in response to different abiotic stress and hormonal treatments. In summary, this study suggests that MsBGLU genes play crucial roles in response to various abiotic stresses and hormonal responses, and provides candidate genes for stress tolerance breeding in alfalfa.


Assuntos
Medicago sativa , Reguladores de Crescimento de Plantas , Medicago sativa/genética , Melhoramento Vegetal , Estresse Fisiológico/genética , Glicosídeo Hidrolases/genética , Filogenia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
BMC Genomics ; 25(1): 32, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177998

RESUMO

BACKGROUND: γ-glutamylcyclotransferase (GGCT), an enzyme to maintain glutathione homeostasis, plays a vital role in the response to plant growth and development as well as the adaptation to various stresses. Although the GGCT gene family analysis has been conducted in Arabidopsis and rice, the family genes have not yet been well identified and analyzed at the genome-wide level in wheat (Triticum aestivum L.). RESULTS: In the present study, 20 TaGGCT genes were identified in the wheat genome and widely distributed on chromosomes 2A, 2B, 2D, 3A, 4A, 5A, 5B, 5D, 6A, 6B, 6D, 7A, 7B, and 7D. Phylogenetic and structural analyses showed that these TaGGCT genes could be classified into three subfamilies: ChaC, GGGACT, and GGCT-PS. They exhibited similar motif compositions and distribution patterns in the same subgroup. Gene duplication analysis suggested that the expansion of TaGGCT family genes was facilitated by segmental duplications and tandem repeats in the wheat evolutionary events. Identification of diverse cis-acting response elements in TaGGCT promoters indicated their potential fundamental roles in response to plant development and abiotic stresses. The analysis of transcriptome data combined with RT-qPCR results revealed that the TaGGCTs genes exhibited ubiquitous expression across plant organs, with highly expressed in roots, stems, and developing grains. Most TaGGCT genes were up-regulated after 6 h under 20% PEG6000 and ABA treatments. Association analysis revealed that two haplotypes of TaGGCT20 gene displayed significantly different Thousand-kernel weight (TKW), Kernel length (KL), and Kernel width (KW) in wheat. The geographical and annual distribution of the two haplotypes of TaGGCT20 gene further revealed that the frequency of the favorable haplotype TaGGCT20-Hap-I was positively selected in the historical breeding process of wheat. CONCLUSION: This study investigated the genome-wide identification, structure, evolution, and expression analysis of TaGGCT genes in wheat. The motifs of TaGGCTs were highly conserved throughout the evolutionary history of wheat. Most TaGGCT genes were highly expressed in roots, stems, and developing grains, and involved in the response to drought stresses. Two haplotypes were developed in the TaGGCT20 gene, where TaGGCT20-Hap-I, as a favorable haplotype, was significantly associated with higher TKW, KL, and KW in wheat, suggesting that the haplotype is used as a function marker for the selection in grain yield in wheat breeding.


Assuntos
Triticum , gama-Glutamilciclotransferase , gama-Glutamilciclotransferase/genética , Filogenia , Melhoramento Vegetal , Regiões Promotoras Genéticas , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas de Plantas/genética
9.
BMC Genomics ; 25(1): 182, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360569

RESUMO

BACKGROUND: Homeodomain-leucine zipper (HD-Zip) transcription factors are plant-specific and play important roles in plant defense against environmental stresses. Identification and functional studies have been carried out in model plants such as rice, Arabidopsis thaliana, and poplar, but comprehensive analysis on the HD-Zip family of Salix suchowensis have not been reported. RESULTS: A total of 55 HD-Zip genes were identified in the willow genome, unevenly distributed on 18 chromosomes except for chromosome 19. And segmental duplication events containing SsHD-Zip were detected on all chromosomes except chromosomes 13 and 19. The SsHD-Zip were classified into 4 subfamilies subfamilies (I-IV) according to the evolutionary analysis, and members of each subfamily shared similar domain structure and gene structure. The combination of GO annotation and promoter analysis showed that SsHD-Zip genes responded to multiple abiotic stresses. Furthermore, the results of qPCR analysis showed that the SsHD-Zip I gene exhibited different degrees of expression under salt stress, PEG treatment and heat treatment. Moreover, there was a synergistic effect between SsHD-Zip I genes under stress conditions based on coregulatory networks analysis. CONCLUSIONS: In this study, HD-Zip transcription factors were systematically identified and analyzed at the whole genome level. These results preliminarily clarified the structural characteristics and related functions of willow HD-Zip family members, and it was found that SsHox34, SsHox36 and SsHox51 genes were significantly involved in the response to various stresses. Together, these findings laid the foundation for further research on the resistance functions of willow HD-Zip genes.


Assuntos
Arabidopsis , Salix , Zíper de Leucina/genética , Salix/genética , Genoma de Planta , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Homeodomínio/química , Filogenia
10.
BMC Genomics ; 25(1): 613, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890561

RESUMO

BACKGROUND: The domain of unknown function 247 (DUF247) proteins is involved in plant development and stress response. Rice is an important worldwide cereal crop, although an increasing number of DUF proteins have been identified, the understanding of DUF proteins is still very limited in rice. RESULTS: In this study, we identified 69 genes that encode DUF247 proteins in the rice (Oryza sativa) genome by homology searches and domain prediction. All the OsDUF247 proteins were classified into four major groups (I, II, III and IV) by phylogenetic analysis. Remarkably, OsDUF247 genes clustered on the chromosomes solely show close phylogenetic relationships, suggesting that gene duplications have driven the expansion of the DUF247 gene family in the rice genome. Tissue profile analysis showed that most DUF247 genes expressed at constitutive levels in seedlings, roots, stems, and leaves, except for seven genes (LOC_Os01g21670, LOC_Os03g19700, LOC_Os05g04060, LOC_Os08g26820, LOC_Os08g26840, LOC_Os08g26850 and LOC_Os09g13410) in panicles. These seven genes were induced by various abiotic stress, including cold, drought, heat, hormone treatment, and especially salt, as demonstrated by further experimental analysis. DUF247 proteins contain transmembrane domains located on the membrane, suggesting their significant roles in rice development and adaptation to the environment. CONCLUSIONS: These findings lay the foundation for functional characterizations of DUF247 genes to unravel their exact role in rice cultivars.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Oryza , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Oryza/genética , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Cromossomos de Plantas/genética , Perfilação da Expressão Gênica , Genes de Plantas , Duplicação Gênica
11.
BMC Genomics ; 25(1): 350, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589807

RESUMO

BACKGROUND: In Eukaryotes, inositol polyphosphates (InsPs) represent a large family of secondary messengers and play crucial roes in various cellular processes. InsPs are synthesized through a series of pohophorylation reactions catalyzed by various InsP kinases in a sequential manner. Inositol 1,4,5-trisphosphate 3-kinase (IP3 3-kinase/IP3K), one member of InsP kinase, plays important regulation roles in InsPs metabolism by specifically phosphorylating inositol 1,4,5-trisphosphate (IP3) to inositol 1,3,4,5-tetrakisphosphate (IP4) in animal cells. IP3Ks were widespread in fungi, plants and animals. However, its evolutionary history and patterns have not been examined systematically. RESULTS: A total of 104 and 31 IP3K orthologues were identified across 57 plant genomes and 13 animal genomes, respectively. Phylogenetic analyses indicate that IP3K originated in the common ancestor before the divergence of fungi, plants and animals. In most plants and animals, IP3K maintained low-copy numbers suggesting functional conservation during plant and animal evolution. In Brassicaceae and vertebrate, IP3K underwent one and two duplication events, respectively, resulting in multiple gene copies. Whole-genome duplication (WGD) was the main mechanism for IP3K duplications, and the IP3K duplicates have experienced functional divergence. Finally, a hypothetical evolutionary model for the IP3K proteins is proposed based on phylogenetic theory. CONCLUSION: Our study reveals the evolutionary history of IP3K proteins and guides the future functions of animal, plant, and fungal IP3K proteins.


Assuntos
Inositol 1,4,5-Trifosfato , Fosfotransferases (Aceptor do Grupo Álcool) , Animais , Inositol 1,4,5-Trifosfato/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Filogenia , Plantas/genética , Plantas/metabolismo , Evolução Molecular
12.
BMC Genomics ; 25(1): 37, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184538

RESUMO

BACKGROUND: Citrus is one of the most valuable fruits worldwide and an economic pillar industry in southern China. Nevertheless, it frequently suffers from undesirable environmental stresses during the growth cycle, which severely restricts the growth, development and yield of citrus. In plants, the growth-regulating factor (GRF) family of transcription factors (TF) is extensively distributed and plays an vital part in plant growth and development, hormone response, as well as stress adaptation. However, the systematic identification and functional analysis of GRF TFs in citrus have not been reported. RESULTS: Here, a genome-wide identification of GRF TFs was performed in Citrus sinensis, 9 members of CsGRFs were systematically identified and discovered to be scattered throughout 5 chromosomes. Subsequently, physical and chemical properties, phylogenetic relationships, structural characteristics, gene duplication events, collinearity and cis-elements of promoter were elaborately analyzed. In particular, the expression patterns of the CsGRF genes in response to multiple phytohormone and abiotic stress treatments were investigated. Predicated on this result, CsGRF04, which exhibited the most differential expression pattern under multiple phytohormone and abiotic stress treatments was screened out. Virus-induced gene silencing (VIGS) technology was utilized to obtain gene silenced plants for CsGRF04 successfully. After the three stress treatments of high salinity, low temperature and drought, the CsGRF04-VIGS lines showed significantly reduced resistance to high salinity and low temperature stresses, but extremely increased resistance to drought stress. CONCLUSIONS: Taken together, our findings systematically analyzed the genomic characterization of GRF family in Citrus sinensis, and excavated a CsGRF04 with potential functions under multiple abiotic stresses. Our study lay a foundation for further study on the function of CsGRFs in abiotic stress and hormone signaling response.


Assuntos
Citrus sinensis , Citrus , Citrus sinensis/genética , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular , Hormônios
13.
Plant Mol Biol ; 114(2): 20, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363403

RESUMO

SQUAMOSA PROMOTER BINDING PROTEIN-LIKEs (SPLs) encode plant-specific transcription factors that regulate plant growth and development, stress response, and metabolite accumulation. However, there is limited information on Scutellaria baicalensis SPLs. In this study, 14 SbSPLs were identified and divided into 8 groups based on phylogenetic relationships. SbSPLs in the same group had similar structures. Abscisic acid-responsive (ABRE) and MYB binding site (MBS) cis-acting elements were found in the promoters of 8 and 6 SbSPLs. Segmental duplications and transposable duplications were the main causes of SbSPL expansion. Expression analysis based on transcriptional profiling showed that SbSPL1, SbSPL10, and SbSPL13 were highly expressed in roots, stems, and flowers, respectively. Expression analysis based on quantitative real-time polymerase chain reaction (RT‒qPCR) showed that most SbSPLs responded to low temperature, drought, abscisic acid (ABA) and salicylic acid (SA), among which the expression levels of SbSPL7/9/10/12 were significantly upregulated in response to abiotic stress. These results indicate that SbSPLs are involved in the growth, development and stress response of S. baicalensis. In addition, 8 Sba-miR156/157 s were identified, and SbSPL1-5 was a potential target of Sba-miR156/157 s. The results of target gene prediction and coexpression analysis together indicated that SbSPLs may be involved in the regulation of L-phenylalanine (L-Phe), lignin and jasmonic acid (JA) biosynthesis. In summary, the identification and characterization of the SbSPL gene family lays the foundation for functional research and provides a reference for improved breeding of S. baicalensis stress resistance and quality traits.


Assuntos
Ácido Abscísico , Scutellaria baicalensis , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Scutellaria baicalensis/genética , Scutellaria baicalensis/metabolismo , Filogenia , Melhoramento Vegetal , Estresse Fisiológico/genética , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
14.
Mol Biol Evol ; 40(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36537201

RESUMO

Asymmetries are essential for proper organization and function of organ systems. Genetic studies in bilaterians have shown signaling through the Nodal/Smad2 pathway plays a key, conserved role in the establishment of body asymmetries. Although the main molecular players in the network for the establishment of left-right asymmetry (LRA) have been deeply described in deuterostomes, little is known about the regulation of Nodal signaling in spiralians. Here, we identified orthologs of the egf-cfc gene, a master regulator of the Nodal pathway in vertebrates, in several invertebrate species, which includes the first evidence of its presence in non-deuterostomes. Our functional experiments indicate that despite being present, egf-cfc does not play a role in the establishment of LRA in gastropods. However, experiments in zebrafish suggest that a single amino acid mutation in the egf-cfc gene in at least the common ancestor of chordates was the necessary step to induce a gain of function in LRA regulation. This study shows that the egf-cfc gene likely appeared in the ancestors of deuterostomes and "protostomes", before being adopted as a mechanism to regulate the Nodal pathway and the establishment of LRA in some lineages of deuterostomes.


Assuntos
Cordados , Fator de Crescimento Epidérmico , Animais , Padronização Corporal/genética , Cordados/genética , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/química , Regulação da Expressão Gênica no Desenvolvimento , Mutação , Peixe-Zebra/genética , Proteínas Ligadas por GPI/metabolismo
15.
Funct Integr Genomics ; 24(3): 108, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773054

RESUMO

Sulfate transporter (SULTR) proteins are in charge of the transport and absorption on sulfate substances, and have been reported to play vital roles in the biological processes of plant growth and stress response. However, there were few reports of genome-wide identification and expression-pattern analysis of SULTRs in Hibiscus mutabilis. Gossypium genus is a ideal model for studying the allopolyploidy, therefore two diploid species (G. raimondii and G. arboreum) and two tetraploid species (G. hirsutum and G. barbadense) were chosen in this study to perform bioinformatic analyses, identifying 18, 18, 35, and 35 SULTR members, respectively. All the 106 cotton SULTR genes were utilized to construct the phylogenetic tree together with 11 Arabidopsis thaliana, 13 Oryza sativa, and 8 Zea mays ones, which was divided into Group1-Group4. The clustering analyses of gene structures and 10 conserved motifs among the cotton SULTR genes showed the consistent evolutionary relationship with the phylogenetic tree, and the results of gene-duplication identification among the four representative Gossypium species indicated that genome-wide or segment duplication might make main contributions to the expansion of SULTR gene family in cotton. Having conducted the cis-regulatory element analysis in promoter region, we noticed that the existing salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA) elements could have influences with expression levels of cotton SULTR genes. The expression patterns of GhSULTR genes were also investigated on the 7 different tissues or organs and the developing ovules and fibers, most of which were highly expressed in root, stem, sepal, receptacel, ovule at 10 DPA, and fiber at 20 and 25 DPA. In addition, more active regulatory were observed in GhSULTR genes responding to multiple abiotic stresses, and 12 highly expressed genes showed the similar expression patterns in the quantitative Real-time PCR experiments under cold, heat, salt, and drought treatments. These findings broaden our insight into the evolutionary relationships and expression patterns of the SULTR gene family in cotton, and provide the valuable information for further screening the vital candidate genes on trait improvement.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Genoma de Planta , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo
16.
BMC Plant Biol ; 24(1): 696, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044142

RESUMO

BACKGROUND: Phosphorus (P) deficiency, a major nutrient stress, greatly hinders plant growth. Phosphate (Pi) uptake in plant roots relies on PHT1 family transporters. However, melon (Cucumis melo L.) lacks comprehensive identification and characterization of PHT1 genes, particularly their response patterns under diverse stresses. RESULTS: This study identified and analyzed seven putative CmPHT1 genes on chromosomes 3, 4, 5, 6, and 7 using the melon genome. Phylogenetic analysis revealed shared motifs, domain compositions, and evolutionary relationships among genes with close histories. Exon number varied from 1 to 3. Collinearity analysis suggested segmental and tandem duplications as the primary mechanisms for CmPHT1 gene family expansion. CmPHT1;4 and CmPHT1;5 emerged as a tandemly duplicated pair. Analysis of cis-elements in CmPHT1 promoters identified 14 functional categories, including putative PHR1-binding sites (P1BS) in CmPHT1;4, CmPHT1;6, and CmPHT1;7. We identified that three WRKY transcription factors regulated CmPHT1;5 expression by binding to its W-box element. Notably, CmPHT1 promoters harbored cis-elements responsive to hormones and abiotic factors. Different stresses regulated CmPHT1 expression differently, suggesting that the adjusted expression patterns might contribute to plant adaptation. CONCLUSIONS: This study unveils the characteristics, evolutionary diversity, and stress responsiveness of CmPHT1 genes in melon. These findings lay the foundation for in-depth investigations into their functional mechanisms in Cucurbitaceae crops.


Assuntos
Cucumis melo , Regulação da Expressão Gênica de Plantas , Fosfatos , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Cucumis melo/genética , Cucumis melo/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Genes de Plantas , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Transporte Biológico/genética
17.
BMC Plant Biol ; 24(1): 588, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902602

RESUMO

BACKGROUND: Soapberry (Sapindus mukorossi) is an economically important multifunctional tree species. Triterpenoid saponins have many functions in soapberry. However, the types of uridine diphosphate (UDP) glucosyltransferases (UGTs) involved in the synthesis of triterpenoid saponins in soapberry have not been clarified. RESULTS: In this study, 42 SmUGTs were identified in soapberry, which were unevenly distributed on 12 chromosomes and had sequence lengths of 450 bp to 1638 bp, with an average of 1388 bp. The number of amino acids in SmUGTs was 149 to 545, with an average of 462. Most SmUGTs were acidic and hydrophilic unstable proteins, and their secondary structures were mainly α-helices and random coils. All had conserved UDPGT and PSPG-box domains. Phylogenetic analysis divided them into four subclasses, which glycosylated different carbon atoms. Prediction of cis-acting elements suggested roles of SmUGTs in plant development and responses to environmental stresses. The expression patterns of SmUGTs differed according to the developmental stage of fruits, as determined by transcriptomics and RT-qPCR. Co-expression network analysis of SmUGTs and related genes/transcription factors in the triterpenoid saponin synthesis pathway was also performed. The results indicated potential roles for many transcription factors, such as SmERFs, SmGATAs and SmMYBs. A correlation analysis showed that 42 SmUGTs were crucial in saponin synthesis in soapberry. CONCLUSIONS: Our findings suggest optimal targets for manipulating glycosylation in soapberry triterpenoid saponin biosynthesis; they also provide a theoretical foundation for further evaluation of the functions of SmUGTs and analyses of their biosynthetic mechanisms.


Assuntos
Glucosiltransferases , Filogenia , Sapindus , Saponinas , Triterpenos , Saponinas/biossíntese , Saponinas/metabolismo , Sapindus/genética , Sapindus/metabolismo , Triterpenos/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
18.
BMC Plant Biol ; 24(1): 637, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971739

RESUMO

BACKGROUND: Based on our previous research, a full-length cDNA sequence of HvANS gene was isolated from purple and white Qingke. The open reading frame (ORF) in the purple variety Nierumuzha was 1320 base pairs (bp), encoding 439 amino acids, while the ORF in the white variety Kunlun 10 was 1197 bp, encoding 398 amino acids. A nonsynonymous mutation was found at the position of 1195 bp (T/C) in the coding sequence (CDS) of the HvANS gene. We carried out a series of studies to further clarify the relationship between the HvANS gene and anthocyanin synthesis in Qingke. RESULTS: The conservative structural domain prediction results showed that the encoded protein belonged to the PLN03178 superfamily. Multiple comparisons showed that this protein had the highest homology with Hordeum vulgare, at 88.61%. The approximately 2000 bp promoter sequence of the HvANS gene was identical in both varieties. The real-time fluorescence PCR (qRT-PCR) results revealed that HvANS expression was either absent or very low in the roots, stems, leaves, and awns of Nierumuzha. In contrast, the HvANS expression was high in the seed coats and seeds of Nierumuzha. Likewise, in Kunlun 10, HvANS expression was either absent or very low, indicating a tissue-specific and variety-specific pattern for HvANS expression. The subcellular localization results indicated that HvANS was in the cell membrane. Metabolomic results indicated that the HvANS gene is closely related to the synthesis of three anthocyanin substances (Idaein chloride, Kinetin 9-riboside, and Cyanidin O-syringic acid). Yeast single hybridization experiments showed that the HvANS promoter interacted with HvANT1, which is the key anthocyanin regulatory protein. In a yeast two-hybrid experiment, we obtained two significantly different proteins (ZWY2020 and POMGNT2-like) and verified the results by qRT-PCR. CONCLUSIONS: These results provide a basis for further studies on the regulatory mechanism of HvANS in the synthesis of anthocyanins in Qingke purple grains.


Assuntos
Antocianinas , Hordeum , Proteínas de Plantas , Sementes , Antocianinas/biossíntese , Sementes/genética , Sementes/metabolismo , Hordeum/genética , Hordeum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Regiões Promotoras Genéticas/genética , Genes de Plantas
19.
BMC Plant Biol ; 24(1): 46, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38216860

RESUMO

BACKGROUND: The GRAS transcription factor family plays a crucial role in various biological processes in different plants, such as tissue development, fruit maturation, and environmental stress. However, the GRAS family in rye has not been systematically analyzed yet. RESULTS: In this study, 67 GRAS genes in S. cereale were identified and named based on the chromosomal location. The gene structures, conserved motifs, cis-acting elements, gene replications, and expression patterns were further analyzed. These 67 ScGRAS members are divided into 13 subfamilies. All members include the LHR I, VHIID, LHR II, PFYRE, and SAW domains, and some nonpolar hydrophobic amino acid residues may undergo cross-substitution in the VHIID region. Interested, tandem duplications may have a more important contribution, which distinguishes them from other monocotyledonous plants. To further investigate the evolutionary relationship of the GRAS family, we constructed six comparative genomic maps of homologous genes between rye and different representative monocotyledonous and dicotyledonous plants. The response characteristics of 19 ScGRAS members from different subfamilies to different tissues, grains at filling stages, and different abiotic stresses of rye were systematically analyzed. Paclobutrazol, a triazole-based plant growth regulator, controls plant tissue and grain development by inhibiting gibberellic acid (GA) biosynthesis through the regulation of DELLA proteins. Exogenous spraying of paclobutrazol significantly reduced the plant height but was beneficial for increasing the weight of 1000 grains of rye. Treatment with paclobutrazol, significantly reduced gibberellin levels in grain in the filling period, caused significant alteration in the expression of the DELLA subfamily gene members. Furthermore, our findings with respect to genes, ScGRAS46 and ScGRAS60, suggest that these two family members could be further used for functional characterization studies in basic research and in breeding programmes for crop improvement. CONCLUSIONS: We identified 67 ScGRAS genes in rye and further analysed the evolution and expression patterns of the encoded proteins. This study will be helpful for further analysing the functional characteristics of ScGRAS genes.


Assuntos
Proteínas de Plantas , Secale , Secale/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Genoma de Planta/genética , Regulação da Expressão Gênica de Plantas
20.
BMC Plant Biol ; 24(1): 249, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38580941

RESUMO

BACKGROUND: Tartary buckwheat (Fagopyrum tataricum) belongs to Polygonaceae family and has attracted increasing attention owing to its high nutritional value. UDP-glycosyltransferases (UGTs) glycosylate a variety of plant secondary metabolites to control many metabolic processes during plant growth and development. However, there have been no systematic reports of UGT superfamily in F. tataricum. RESULTS: We identified 173 FtUGTs in F. tataricum based on their conserved UDPGT domain. Phylogenetic analysis of FtUGTs with 73 Arabidopsis UGTs clustered them into 21 families. FtUGTs from the same family usually had similar gene structure and motif compositions. Most of FtUGTs did not contain introns or had only one intron. Tandem repeats contributed more to FtUGTs amplification than segmental duplications. Expression analysis indicates that FtUGTs are widely expressed in various tissues and likely play important roles in plant growth and development. The gene expression analysis response to different abiotic stresses showed that some FtUGTs were involved in response to drought and cadmium stress. Our study provides useful information on the UGTs in F. tataricum, and will facilitate their further study to better understand their function. CONCLUSIONS: Our results provide a theoretical basis for further exploration of the functional characteristics of FtUGTs and for understanding the growth, development, and metabolic model in F. tataricum.


Assuntos
Fagopyrum , Humanos , Filogenia , Fagopyrum/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA