Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 602(12): 2855-2872, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38709959

RESUMO

Alpha band oscillations in shared synaptic inputs to the alpha motor neuron pool can be considered an involuntary source of noise that hinders precise voluntary force production. This study investigated the impact of changing muscle length on the shared synaptic oscillations to spinal motor neurons, particularly in the physiological tremor band. Fourteen healthy individuals performed low-level dorsiflexion contractions at ankle joint angles of 90° and 130°, while high-density surface electromyography (HDsEMG) was recorded from the tibialis anterior (TA). We decomposed the HDsEMG into motor units spike trains and calculated the motor units' coherence within the delta (1-5 Hz), alpha (5-15 Hz), and beta (15-35 Hz) bands. Additionally, force steadiness and force spectral power within the tremor band were quantified. Results showed no significant differences in force steadiness between 90° and 130°. In contrast, alpha band oscillations in both synaptic inputs and force output decreased as the length of the TA was moved from shorter (90°) to longer (130°), with no changes in delta and beta bands. In a second set of experiments (10 participants), evoked twitches were recorded with the ankle joint at 90° and 130°, revealing longer twitch durations in the longer TA muscle length condition compared to the shorter. These experimental results, supported by a simple computational simulation, suggest that increasing muscle length enhances the muscle's low-pass filtering properties, influencing the oscillations generated by the Ia afferent feedback loop. Therefore, this study provides valuable insights into the interplay between muscle biomechanics and neural oscillations. KEY POINTS: We investigated whether changes in muscle length, achieved by changing joint position, could influence common synaptic oscillations to spinal motor neurons, particularly in the tremor band (5-15 Hz). Our results demonstrate that changing muscle length from shorter to longer induces reductions in the magnitude of alpha band oscillations in common synaptic inputs. Importantly, these reductions were reflected in the oscillations of muscle force output within the alpha band. Longer twitch durations were observed in the longer muscle length condition compared to the shorter, suggesting that increasing muscle length enhances the muscle's low-pass filtering properties. Changes in the peripheral contractile properties of motor units due to changes in muscle length significantly influence the transmission of shared synaptic inputs into muscle force output. These findings prove the interplay between muscle mechanics and neural adaptations.


Assuntos
Neurônios Motores , Contração Muscular , Músculo Esquelético , Humanos , Neurônios Motores/fisiologia , Masculino , Adulto , Músculo Esquelético/fisiologia , Músculo Esquelético/inervação , Contração Muscular/fisiologia , Feminino , Eletromiografia , Adulto Jovem , Sinapses/fisiologia , Medula Espinal/fisiologia
2.
J Physiol ; 602(9): 2089-2106, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38544437

RESUMO

When manipulating objects, humans begin adjusting their grip force to friction within 100 ms of contact. During motor adaptation, subjects become aware of the slipperiness of touched surfaces. Previously, we have demonstrated that humans cannot perceive frictional differences when surfaces are brought in contact with an immobilised finger, but can do so when there is submillimeter lateral displacement or subjects actively make the contact movement. Similarly, in, we investigated how humans perceive friction in the absence of intentional exploratory sliding or rubbing movements, to mimic object manipulation interactions. We used a two-alternative forced-choice paradigm in which subjects had to reach and touch one surface followed by another, and then indicate which felt more slippery. Subjects correctly identified the more slippery surface in 87 ± 8% of cases (mean ± SD; n = 12). Biomechanical analysis of finger pad skin displacement patterns revealed the presence of tiny (<1 mm) localised slips, known to be sufficient to perceive frictional differences. We tested whether these skin movements arise as a result of natural hand reaching kinematics. The task was repeated with the introduction of a hand support, eliminating the hand reaching movement and minimising fingertip movement deviations from a straight path. As a result, our subjects' performance significantly declined (66 ± 12% correct, mean ± SD; n = 12), suggesting that unrestricted reaching movement kinematics and factors such as physiological tremor, play a crucial role in enhancing or enabling friction perception upon initial contact. KEY POINTS: More slippery objects require a stronger grip to prevent them from slipping out of hands. Grip force adjustments to friction driven by tactile sensory signals are largely automatic and do not necessitate cognitive involvement; nevertheless, some associated awareness of grip surface slipperiness under such sensory conditions is present and helps to select a safe and appropriate movement plan. When gripping an object, tactile receptors provide frictional information without intentional rubbing or sliding fingers over the surface. However, we have discovered that submillimeter range lateral displacement might be required to enhance or enable friction sensing. The present study provides evidence that such small lateral movements causing localised partial slips arise and are an inherent part of natural reaching movement kinematics.


Assuntos
Fricção , Movimento , Humanos , Masculino , Fenômenos Biomecânicos , Adulto , Feminino , Movimento/fisiologia , Adulto Jovem , Braço/fisiologia , Percepção do Tato/fisiologia , Dedos/fisiologia , Força da Mão/fisiologia , Tato/fisiologia , Desempenho Psicomotor/fisiologia
3.
J Neurophysiol ; 131(5): 891-899, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568504

RESUMO

The flexibility of the motor system to adjust a planned action before or during the execution of the movement in response to sensory information is critical for preventing errors in motor control. As individuals age, this function declines, leading to an increased incidence of motor errors. Although sensory processing and cognitive decline are known contributors to this impairment, here, we test the hypothesis that repetition of context-specific planned actions interferes with the adjustment of feedforward motor commands. Younger and older participants were instructed to grasp and lift a T-shaped object with a concealed, off-sided center of mass and minimize its roll through anticipatory force control, relying predominantly on predictive model-driven planning (i.e., sensorimotor memories) developed through repeated lifts. We selectively manipulate the number of trial repeats with the center of mass on one side before switching it to the other side of the T-shaped object. The results showed that increasing the number of repetitions improved performance in manipulating an object with a given center of mass but led to increased errors when the object's center of mass was switched. This deleterious effect of repetition on feedforward motor adjustment was observed in younger and older adults. Critically, we show these effects on an internal model-driven motor planning task that relies predominantly on sensorimotor memory, with no differences in sensory inputs from the repetition manipulation. The findings indicate that feedforward motor adjustments are hampered by repetitive stereotyped planning and execution of motor behavior.NEW & NOTEWORTHY Adjusting planned actions in response to sensory stimuli degrades with age contributing to increased incidence of errors ranging from clumsy spills to catastrophic falls. Multiple factors likely contribute to age-related motor inflexibility, including sensory- and cognition-supporting system declines. Here, we present compelling evidence for repetition to disrupt feedforward adjusting of motor commands in younger and older adults, which suggests increases in stereotypy as a deleterious potentiator of motor control errors.


Assuntos
Envelhecimento , Desempenho Psicomotor , Humanos , Masculino , Idoso , Feminino , Adulto , Desempenho Psicomotor/fisiologia , Adulto Jovem , Envelhecimento/fisiologia , Pessoa de Meia-Idade , Força da Mão/fisiologia , Atividade Motora/fisiologia
4.
Cereb Cortex ; 33(12): 7670-7677, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36928881

RESUMO

This study aimed to investigate the cortical responses to the ankle force control and the mechanism underlying changes in ankle force control task induced by transcranial direct current stimulation (tDCS). Sixteen young adults were recruited, and they completed the electroencephalogram (EEG) assessment and high-definition tDCS (HD-tDCS) sessions. Root mean square (RMS) error was used to evaluate ankle force control task performance. Spectral power analysis was conducted to extract the average power spectral density (PSD) in the alpha (8-13 Hz) and beta (13-30 Hz) bands for resting state and tasking (i.e. task-PSD). The ankle force control task induced significant decreases in alpha and beta PSDs in the central, left, and right primary sensorimotor cortex (SM1) and beta PSD in the central frontal as compared with the resting state. HD-tDCS significantly decreased the RMS and beta task-PSD in the central frontal and SM1. A significant association between the percent change of RMS and the percent change of beta task-PSD in the central SM1 after HD-tDCS was observed. In conclusion, ankle force control task activated a distributed cortical network mainly including the SM1. HD-tDCS applied over SM1 could enhance ankle force control and modulate the beta-band activity of the sensorimotor cortex.


Assuntos
Córtex Sensório-Motor , Estimulação Transcraniana por Corrente Contínua , Adulto Jovem , Humanos , Tornozelo , Córtex Sensório-Motor/fisiologia , Eletroencefalografia
5.
Support Care Cancer ; 32(5): 304, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652168

RESUMO

PURPOSE: Chemotherapy-induced peripheral neuropathy (CIPN) commonly involves hand dexterity impairment. However, the factors affecting hand dexterity impairment are unknown and there is currently no established treatment. The purpose of the current study was to clarify factors influencing hand dexterity impairment in taxane-induced peripheral neuropathy using subjective and objective assessments. METHODS: We assessed patient characteristics, treatment-related factors, subjective symptoms of CIPN (Patient Neurotoxicity Questionnaire [PNQ]), psychological symptoms, and upper limb dysfunction (Quick Disabilities of the Arm, Shoulder and Hand [Quick DASH]). Quantitative assessments were pinch strength, sensory threshold, hand dexterity impairment, and grip force control. Multiple regression analysis was performed using hand dexterity impairment as the dependent variable and age and PNQ, Quick DASH, and control of grip force as independent variables. RESULTS: Forty-three breast cancer patients were included in the analysis. Hand dexterity impairment in taxane-induced peripheral neuropathy patients was significantly correlated with age, grip force control, and PNQ sensory scores (p < 0.008). Multiple regression analysis demonstrated that PNQ sensory scores and grip force control were significantly associated with hand dexterity impairment (p < 0.01). CONCLUSION: Subjective symptoms (numbness and pain) and grip force control contributed to impaired hand dexterity in taxane-induced peripheral neuropathy.


Assuntos
Antineoplásicos , Neoplasias da Mama , Força da Mão , Mãos , Doenças do Sistema Nervoso Periférico , Taxoides , Humanos , Feminino , Pessoa de Meia-Idade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/fisiopatologia , Força da Mão/fisiologia , Taxoides/efeitos adversos , Idoso , Adulto , Mãos/fisiopatologia , Neoplasias da Mama/tratamento farmacológico , Inquéritos e Questionários , Antineoplásicos/efeitos adversos , Análise de Regressão , Avaliação da Deficiência , Hidrocarbonetos Aromáticos com Pontes/efeitos adversos
6.
Sensors (Basel) ; 24(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257516

RESUMO

Compliance control strategies have been utilised for the ultraprecision polishing process for many years. Most researchers execute active compliance control strategies by employing impedance control law on a robot development platform. However, these methods are limited by the load capacity, positioning accuracy, and repeatability of polishing mechanisms. Moreover, a sophisticated actuator mounted at the end of the end-effector of robots is difficult to maintain in the polishing scenario. In contrast, a hybrid mechanism for polishing that possesses the advantages of serial and parallel mechanisms can mitigate the above problems, especially when an active compliance control strategy is employed. In this research, a high-frequency-impedance robust force control strategy is proposed. It outputs a position adjustment value directly according to a contact pressure adjustment value. An open architecture control system with customised software is developed to respond to external interrupts during the polishing procedure, implementing the active compliance control strategy on a hybrid mechanism. Through this method, the hybrid mechanism can adapt to the external environment with a given contact pressure automatically instead of relying on estimating the environment stiffness. Experimental results show that the proposed strategy adapts the unknown freeform surface without overshooting and improves the surface quality. The average surface roughness value decreases from 0.057 um to 0.027 um.

7.
J Neurophysiol ; 129(6): 1389-1399, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37162174

RESUMO

Anticipatory force control underlying dexterous manipulation has historically been understood to rely on visual object properties and on sensorimotor memories associated with previous experiences with similar objects. However, it is becoming increasingly recognized that anticipatory force control also relies on how an object is grasped. Experiments that allow unconstrained grasp contact points when preventing tilting an object with an off-centered mass show trial-to-trial variations in digit position and subsequent scaling of lift forces, all before feedback of object properties becomes available. Here, we manipulated the availability of visual information before reach onset and after grasp contact (with no vision during the reach) to determine the contribution and timing of visual information processing to the scaling of fingertip forces during dexterous manipulation at flexible contact points. Results showed that anticipatory force control was similarly successful, quantified as an appropriate compensatory torque at lift onset that counters the external torque of an object with a left and right center of mass, irrespective of the timing and availability of visual information. However, the way in which anticipatory force control was achieved varied depending on the availability of visual information. Visual information following grasp contact was associated with greater use of an asymmetric thumb and index finger grasp configuration to generate a compensatory torque and digit position variability, together with faster fingertip force scaling and sensorimotor learning. This result supports the hypothesis that visual information at a critical and functionally relevant time point following grasp contact supports variable and swift digit-based force control for dexterous object manipulation.NEW & NOTEWORTHY Humans excel in dexterous object manipulation by precisely coordinating grasp points and fingertip forces, highlighted in scenarios requiring countering object torques in advance, e.g., lifting a teacup without spilling will demand a unique digit force pattern based on the grip configuration at lift onset. Here, we show that visual information following grasp contact, a critical and functionally relevant time point, supports digit position variability and swift anticipatory force control to achieve a dexterous motor goal.


Assuntos
Dedos , Força da Mão , Humanos , Fenômenos Biomecânicos , Polegar , Aprendizagem , Desempenho Psicomotor
8.
Exp Brain Res ; 241(1): 277-288, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36484793

RESUMO

Age- and sex-related alterations in the control of multiple muscles during contractions are not well understood. The purpose of the present study was to examine the age and sex differences in force steadiness and intermuscular coherence (IMC), and thereby to clarify the functional role of IMC during plantar flexion. Twenty-six young (YNG, 23-34 years), thirty middle-aged (MID, 35-64 years) and twenty-four older adults (OLD, 65-82 years) performed submaximal isometric contractions of plantar flexion, while electromyography was recorded from the soleus (SOL), gastrocnemius lateralis/medialis (GL/GM) and tibialis anterior (TA) muscles. Coefficient of variation (CV) of torque and IMC in the alpha, beta and gamma bands was calculated. We found that OLD demonstrated significantly higher torque CV than YNG and MID, and males demonstrated significantly higher torque CV than females (both p < 0.05). The IMC in the gamma band (five out of the six pairs) was significantly higher in YNG than MID and/or OLD (p < 0.05), while the gamma band IMC between GL and SOL was significantly higher in females. However, age or sex differences were not detected in the alpha or beta band. Moreover, the gamma band IMC between SOL and TA had a weak (r = - 0.229) but significant (p < 0.05) negative correlation with torque CV. These results suggest that force steadiness differs with age and sex, and that the higher gamma band IMC may contribute to more stable force control during plantar flexion.


Assuntos
Perna (Membro) , Caracteres Sexuais , Pessoa de Meia-Idade , Humanos , Masculino , Feminino , Idoso , Perna (Membro)/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia/métodos , Contração Isométrica/fisiologia , Torque
9.
Exp Brain Res ; 241(1): 313-323, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36512062

RESUMO

This study aimed to investigate the potential effect of bilateral transcranial direct current stimulation (tDCS) on repetitive bimanual force control and force coordination in healthy young adults. In this sham-controlled crossover study, 18 right-handed young adults were enrolled. Repetitive bimanual handgrip force control trials were performed by the participants at 40% of maximum voluntary contraction until task failure. We randomly provided bilateral active and sham tDCS to the primary motor cortex (M1) of each participant before conducting the repetitive bimanual force control task. We quantified the number of successful trials to assess the ability to maintain bimanual force control across multiple trials. Moreover, we estimated bimanual force control and force coordination by quantifying force accuracy, variability, regularity, and correlation coefficient in maximal and adjusted successful trials. Force asymmetry was calculated to examine potential changes in motor dependency on each hand during the task. Bilateral tDCS significantly increased the number of successful trials compared with sham tDCS. The adjusted successful trial revealed that participants who received bilateral tDCS maintained better bimanual force control and coordination, as indicated by decreased force variability and regularity as well as more negative correlation coefficient values in comparison with sham condition. Moreover, participants who received bilateral tDCS produced more force from the dominant hand than from the nondominant hand in both maximal and adjusted successful trials. These findings suggest that bilateral tDCS on M1 successfully maintains bimanual force control with better force coordination by modulating motor dependency.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Adulto Jovem , Estudos Cross-Over , Mãos/fisiologia , Força da Mão , Desempenho Psicomotor/fisiologia
10.
Sensors (Basel) ; 23(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36679523

RESUMO

The present study aimed to investigate the effects of a continuous visual feedback and the isometric contraction nature on the complexity and variability of force. Thirteen healthy and young male adults performed three MVCs followed by three submaximal isometric force tasks at a target force of 40% of their MVC for 30 s, as follows: (i) push isometric task with visual feedback (Pvisual); (ii) hold isometric task with visual feedback (Hvisual); (iii) hold isometric task without visual feedback (Hnon-visual). Force complexity was evaluated through sample entropy (SampEn) of the force output. Force variability was analyzed through the coefficient of variation (CV). Results showed that differences were task-related, with Pvisual showing higher complexity (i.e., higher SampEn) and decreased variability (i.e., lower CV) when compared with the remaining tasks. Additionally, no significant differences were found between the two hold isometric force tasks (i.e., no influence of visual feedback). Our results are promising as we showed these two isometric tasks to induce different motor control strategies. Furthermore, we demonstrated that visual feedback's influence is also dependent on the type of isometric task. These findings should motivate researchers and physiologists to shift training paradigms and incorporate different force control evaluation tasks.


Assuntos
Contração Isométrica , Músculo Esquelético , Masculino , Humanos , Contração Isométrica/fisiologia , Músculo Esquelético/fisiologia , Torque , Retroalimentação Sensorial , Entropia
11.
Sensors (Basel) ; 23(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36679794

RESUMO

Contact force control for Unmanned Aerial Manipulators (UAMs) is a challenging issue today. This paper designs a new method to stabilize the UAM system during the formation of contact force with the target. Firstly, the dynamic model of the contact process between the UAM and the target is derived. Then, a non-singular global fast terminal sliding mode controller (NGFTSMC) is proposed to guarantee that the contact process is completed within a finite time. Moreover, to compensate for system uncertainties and external disturbances, the equivalent part of the controller is estimated by an adaptive radial basis function neural network (RBFNN). Finally, the Lyapunov theory is applied to validate the global stability of the closed-loop system and derive the adaptive law for the neural network weight matrix online updating. Simulation and experimental results demonstrate that the proposed method can stably form a continuous contact force and reduce the chattering with good robustness.


Assuntos
Cefapirina , Redes Neurais de Computação , Simulação por Computador , Incerteza
12.
Sensors (Basel) ; 23(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36850591

RESUMO

Remote robotic systems are employed in the CERN accelerator complex to perform different tasks, such as the safe handling of cables and their connectors. Without dedicated control, these kinds of actions are difficult and require the operators' intervention, which is subjected to dangerous external agents. In this paper, two novel modules of the CERNTAURO framework are presented to provide a safe and usable solution for managing optical fibres and their connectors. The first module is used to detect touch and slippage, while the second one is used to regulate the grasping force and contrast slippage. The force reference was obtained with a combination of object recognition and a look-up table method. The proposed strategy was validated with tests in the CERN laboratory, and the preliminary experimental results demonstrated statistically significant increases in time-based efficiency and in the overall relative efficiency of the tasks.

13.
Sensors (Basel) ; 23(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37430614

RESUMO

To improve the quality and efficiency of robot grinding, a design and a control algorithm for a robot used for grinding the surfaces of large, curved workpieces with unknown parameters, such as wind turbine blades, are proposed herein. Firstly, the structure and motion mode of the grinding robot are determined. Secondly, in order to solve the problem of complexity and poor adaptability of the algorithm in the grinding process, a force/position hybrid control strategy based on fuzzy PID is proposed which greatly improves the response speed and reduces the error of the static control strategy. Compared with normal PID, fuzzy PID has the advantages of variable parameters and strong adaptability; the hydraulic cylinder used to adjust the angle of the manipulator can control the speed offset within 0.27 rad/s, and the grinding process can be carried out directly without obtaining the specific model of the surface to be machined. Finally, the experiments are carried out, the grinding force and feed speed are maintained within the allowable error range of the expected value, and the results verify the feasibility and effectiveness of the position tracking and constant force control strategy in this paper. The surface roughness of the blade is maintained within Ra = 2~3 µm after grinding, which proves that the grinding quality meets the requirements of the best surface roughness required for the subsequent process.

14.
Sensors (Basel) ; 23(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37420859

RESUMO

In recent years, there has been a growing interest in the development of robotic systems for improving the quality of life of individuals of all ages. Specifically, humanoid robots offer advantages in terms of friendliness and ease of use in such applications. This article proposes a novel system architecture that enables a commercial humanoid robot, specifically the Pepper robot, to walk side-by-side while holding hands, and communicating by responding to the surrounding environment. To achieve this control, an observer is required to estimate the force applied to the robot. This was accomplished by comparing joint torques calculated from the dynamics model to actual current measurements. Additionally, object recognition was performed using Pepper's camera to facilitate communication in response to surrounding objects. By integrating these components, the system has demonstrated its capability to achieve its intended purpose.


Assuntos
Robótica , Humanos , Qualidade de Vida , Caminhada/fisiologia , Mãos , Comunicação
15.
Sensors (Basel) ; 23(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37448007

RESUMO

This article describes a one-degree-of-freedom haptic device that can be applied to perform three different exercises for shoulder rehabilitation. The device is based on a force control architecture and an adaptive speed PI controller. It is a portable equipment that is easy to use for any patient, and was optimized for rehabilitating external rotation movements of the shoulder in patients in whom this was limited by muscle-skeletal injuries. The sample consisted of 12 shoulder rehabilitation sessions with different shoulder pathologies that limited their range of shoulder mobility. The mean and standard deviations of the external rotation of shoulder were 42.91 ± 4.53° for the pre-intervention measurements and 53.88 ± 4.26° for the post-intervention measurement. In addition, patients reported high levels of acceptance of the device. Scores on the SUS questionnaire ranged from 65 to 97.5, with an average score of 82.70 ± 9.21, indicating a high degree of acceptance. The preliminary results suggest that the use of this device and the incorporation of such equipment into rehabilitation services could be of great help for patients in their rehabilitation process and for physiotherapists in applying their therapies.


Assuntos
Articulação do Ombro , Ombro , Humanos , Extremidade Superior , Terapia por Exercício/métodos , Exercício Físico , Amplitude de Movimento Articular
16.
Sensors (Basel) ; 23(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37960555

RESUMO

The ability of the lumbar extensor muscles to accurately control static and dynamic forces is important during daily activities such as lifting. Lumbar extensor force control is impaired in low-back pain patients and may therefore explain the variances in lifting kinematics. Thirty-three chronic low-back pain participants were instructed to lift weight using a self-selected technique. Participants also performed an isometric lumbar extension task where they increased and decreased their lumbar extensor force output to match a variable target force within 20-50% lumbar extensor maximal voluntary contraction. Lifting trunk and lower limb range of motion and angular velocity variables derived from phase plane analysis in all planes were calculated. Lumbar extensor force control was analyzed by calculating the Root-Mean-Square Error (RMSE) between the participants' force and the target force during the increasing (RMSEA), decreasing (RMSED) force portions and for the overall force error (RMSET) of the test. The relationship between lifting kinematics and RMSE variables was analyzed using multiple linear regression. Knee angular velocity in the sagittal and coronal planes were positively associated with RMSEA (R2 = 0.10, ß = 0.35, p = 0.046 and R2 = 0.21, ß = 0.48, p = 0.004, respectively). Impaired lumbar extensor force control is associated with increased multiplanar knee movement velocity during lifting. The study findings suggest a potential relationship between lumbar and lower limb neuromuscular function in people with chronic low-back pain.


Assuntos
Remoção , Dor Lombar , Humanos , Joelho , Articulação do Joelho/fisiologia , Extremidade Inferior , Fenômenos Biomecânicos
17.
Sensors (Basel) ; 23(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37447824

RESUMO

Currently, braking control systems used in regional railways are open-loop systems, such as metro and tramways. Given that the performance of braking can be influenced by issues such as wheel sliding or the properties of the friction components present in brake systems, our study puts forward a novel closed-loop mechanism to autonomously stabilize braking performance. It is able to keep train deceleration close to the target values required by the braking control unit (BCU), especially in terms of the electrical-pneumatic braking transform process. This method fully considers the friction efficiency characteristics of brake pads and encompasses running tests using rolling stock. The test results show that the technique is able to stabilize the actual deceleration at a closer rate to the target deceleration than before and avoid wheel sliding protection (WSP) action, especially during low-speed periods.


Assuntos
Condução de Veículo , Desaceleração , Retroalimentação , Fricção , Acidentes de Trânsito/prevenção & controle
18.
Physiology (Bethesda) ; 36(2): 114-130, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33595382

RESUMO

Voluntary actions are controlled by the synaptic inputs that are shared by pools of spinal motor neurons. The slow common oscillations in the discharge times of motor units due to these synaptic inputs are strongly correlated with the fluctuations in force during submaximal isometric contractions (force steadiness) and moderately associated with performance scores on some tests of motor function. However, there are key gaps in knowledge that limit the interpretation of differences in force steadiness.


Assuntos
Neurônios Motores , Músculo Esquelético , Humanos
19.
Exp Brain Res ; 240(4): 1005-1016, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35171308

RESUMO

As the populations of the United States and developed nations age, motor control performance is adversely impacted, resulting in functional impairments that can diminish quality of life. Generally, force control in the lower limb worsens with age, with older adults (OA) displaying more variable and less accurate submaximal forces. Corticospinal inhibitory signaling may influence force control, with those OA who maintain corticospinal inhibitory signaling capacity achieving steadier forces. This study aimed to assess the relationships between lower limb force control and transcranial magnetic stimulation (TMS) measures of corticospinal inhibition (i.e., cortical silent period (cSP) duration and depth). 15 OA and 14 young adults (YA) were recruited for this study. All subjects underwent a TMS protocol to elicit the cSP while maintaining 15% of their maximal force in their knee extensor muscles. OA and YA did not display differences in force control metrics or corticospinal inhibitory measures. However, in OA, maximal cSP depth (%dSP max) was associated with lower force variability. No other significant relationships existed in the YA or OA groups. Future studies will benefit from evaluating a range of target forces and target muscles to assess potential relationships between sensorimotor inhibitory capacity and control of muscle force output.


Assuntos
Perna (Membro) , Qualidade de Vida , Idoso , Eletromiografia/métodos , Potencial Evocado Motor/fisiologia , Humanos , Extremidade Inferior , Músculo Esquelético/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto Jovem
20.
Scand J Med Sci Sports ; 32(10): 1430-1443, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35815914

RESUMO

During voluntary muscle contractions, force output is characterized by constant inherent fluctuations, which can be quantified either according to their magnitude or temporal structure, that is, complexity. The presence of such fluctuations when targeting a set force indicates that control of force is not perfectly accurate, which can have significant implications for task performance. Compared to young adults, older adults demonstrate a greater magnitude and lower complexity in force fluctuations, indicative of decreased steadiness, and adaptability of force output, respectively. The nature of this loss-of-force control depends not only on the age of the individual but also on the muscle group performing the task, the intensity and type of contraction and whether the task is performed with additional cognitive load. Importantly, this age-associated loss-of-force control is correlated with decreased performance in a range of activities of daily living and is speculated to be of greater importance for functional capacity than age-associated decreases in maximal strength. Fortunately, there is evidence that acute physical activity interventions can reverse the loss-of-force control in older individuals, though whether this translates to improved functional performance and whether lifelong physical activity can protect against the changes have yet to be established. A number of mechanisms, related to both motor unit properties and the behavior of motor unit populations, have been proposed for the age-associated changes in force fluctuations. It is likely, though, that age-associated changes in force control are related to increased common fluctuations in the discharge times of motor units.


Assuntos
Atividades Cotidianas , Músculo Esquelético , Idoso , Envelhecimento/fisiologia , Eletromiografia , Exercício Físico , Humanos , Contração Isométrica/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA