Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Math Biosci Eng ; 19(7): 6962-6984, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35730291

RESUMO

We study symmetry reductions of nonlinear partial differential equations that can be used for describing diffusion processes in heterogeneous medium. We find ansatzes reducing these equations to systems of ordinary differential equations. The ansatzes are constructed using generalized symmetries of second-order ordinary differential equations. The method applied gives the possibility to find exact solutions which cannot be obtained by virtue of the classical Lie method. Such solutions are constructed for nonlinear diffusion equations that are invariant with respect to one-parameter and two-parameter Lie groups of point transformations. We prove a theorem relating the property of invariance of a found solution to the dimension of the Lie algebra admitted by the corresponding equation. We also show that the method is applicable to non-evolutionary partial differential equations and ordinary differential equations.

2.
Springerplus ; 4: 418, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26301165

RESUMO

Research on symmetry detection focuses on identifying and detecting new types of symmetry. The paper presents an algorithm that is capable of detecting any type of permutation-based symmetry, including many types for which there are no existing algorithms. General symmetry detection is library-based, but symmetries that can be parameterized, (i.e. total, partial, rotational, and dihedral symmetry), can be detected without using libraries. In many cases it is faster than existing techniques. Furthermore, it is simpler than most existing techniques, and can easily be incorporated into existing software. The algorithm can also be used with virtually any type of matrix-based symmetry, including conjugate symmetry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA