Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 22(1): 570, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34837948

RESUMO

BACKGROUND: To select the most complete, continuous, and accurate assembly for an organism of interest, comprehensive quality assessment of assemblies is necessary. We present a novel tool, called Evaluation of De Novo Assemblies (EvalDNA), which uses supervised machine learning for the quality scoring of genome assemblies and does not require an existing reference genome for accuracy assessment. RESULTS: EvalDNA calculates a list of quality metrics from an assembled sequence and applies a model created from supervised machine learning methods to integrate various metrics into a comprehensive quality score. A well-tested, accurate model for scoring mammalian genome sequences is provided as part of EvalDNA. This random forest regression model evaluates an assembled sequence based on continuity, completeness, and accuracy, and was able to explain 86% of the variation in reference-based quality scores within the testing data. EvalDNA was applied to human chromosome 14 assemblies from the GAGE study to rank genome assemblers and to compare EvalDNA to two other quality evaluation tools. In addition, EvalDNA was used to evaluate several genome assemblies of the Chinese hamster genome to help establish a better reference genome for the biopharmaceutical manufacturing community. EvalDNA was also used to assess more recent human assemblies from the QUAST-LG study completed in 2018, and its ability to score bacterial genomes was examined through application on bacterial assemblies from the GAGE-B study. CONCLUSIONS: EvalDNA enables scientists to easily identify the best available genome assembly for their organism of interest without requiring a reference assembly. EvalDNA sets itself apart from other quality assessment tools by producing a quality score that enables direct comparison among assemblies from different species.


Assuntos
Genômica , Software , Animais , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Aprendizado de Máquina , Análise de Sequência de DNA
2.
Genetics ; 221(3)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35536198

RESUMO

Bioinformatic analysis-such as genome assembly quality assessment, alignment summary statistics, relative synonymous codon usage, file format conversion, and processing and analysis-is integrated into diverse disciplines in the biological sciences. Several command-line pieces of software have been developed to conduct some of these individual analyses, but unified toolkits that conduct all these analyses are lacking. To address this gap, we introduce BioKIT, a versatile command line toolkit that has, upon publication, 42 functions, several of which were community-sourced, that conduct routine and novel processing and analysis of genome assemblies, multiple sequence alignments, coding sequences, sequencing data, and more. To demonstrate the utility of BioKIT, we conducted a comprehensive examination of relative synonymous codon usage across 171 fungal genomes that use alternative genetic codes, showed that the novel metric of gene-wise relative synonymous codon usage can accurately estimate gene-wise codon optimization, evaluated the quality and characteristics of 901 eukaryotic genome assemblies, and calculated alignment summary statistics for 10 phylogenomic data matrices. BioKIT will be helpful in facilitating and streamlining sequence analysis workflows. BioKIT is freely available under the MIT license from GitHub (https://github.com/JLSteenwyk/BioKIT), PyPi (https://pypi.org/project/jlsteenwyk-biokit/), and the Anaconda Cloud (https://anaconda.org/jlsteenwyk/jlsteenwyk-biokit). Documentation, user tutorials, and instructions for requesting new features are available online (https://jlsteenwyk.com/BioKIT).


Assuntos
Biologia Computacional , Software , Códon , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA