Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Virol ; 96(14): e0063922, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35758659

RESUMO

Gammaherpesviruses, such as human Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68), are species-specific, ubiquitous pathogens that are associated with multiple cancers, including B cell lymphomas. These viruses have a natural tropism for B cells and usurp B cell differentiation to drive a unique and robust polyclonal germinal center response to establish a long-term latent reservoir in memory B cells. The robust polyclonal germinal center response driven by gammaherpesvirus infection increases the risk for B cell transformation. Unsurprisingly, many gammaherpesvirus cancers are derived from germinal center or post-germinal center B cells. The viral and host factors that influence the gammaherpesvirus-driven germinal center response are not clearly defined. We previously showed that host interleukin 17 receptor A (IL-17RA) signaling promotes the establishment of chronic MHV68 infection and the MHV68-driven germinal center response. In this study, we found that T cell-intrinsic IL-17RA signaling recapitulates some proviral aspects of global IL-17RA signaling during MHV68 infection. Specifically, we found that T cell-intrinsic IL-17RA signaling supports the MHV68-driven germinal center response, the establishment of latency in the spleen, and viral reactivation in the spleen and peritoneal cavity. Our study unveils an unexpected finding where the T cell-specific IL-17RA signaling supports the establishment of a latent reservoir of a B cell-tropic gammaherpesvirus. IMPORTANCE Gammaherpesviruses, such as human EBV, establish lifelong infection in >95% of adults and are associated with B cell lymphomas. Gammaherpesviruses usurp the germinal center response to establish latent infection, and the germinal center B cells are thought to be the target of viral transformation. We previously found that global expression of IL-17RA promotes the establishment of chronic MHV68 infection and the MHV68-driven germinal center response. In this study, we showed that T cell-intrinsic IL-17RA signaling is necessary to promote the MHV68-driven germinal center response by supporting CD4+ T follicular helper cell expansion. We also found that T cell-intrinsic IL-17RA signaling contributes to but is not solely responsible for the systemic proviral role of IL-17RA signaling, highlighting the multifaceted function of IL-17RA signaling during MHV68 infection.


Assuntos
Infecções por Herpesviridae , Receptores de Interleucina-17 , Rhadinovirus , Transdução de Sinais , Linfócitos T , Animais , Infecções por Herpesviridae/virologia , Humanos , Linfoma de Células B , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Interleucina-17/metabolismo , Rhadinovirus/fisiologia , Linfócitos T/metabolismo , Linfócitos T/virologia
2.
J Virol ; 96(20): e0126022, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36169331

RESUMO

Gammaherpesviruses infect most vertebrate species and are associated with B cell lymphomas. Manipulation of B cell differentiation is critical for natural infection and lymphomagenesis driven by gammaherpesviruses. Specifically, human Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68) drive differentiation of infected naive B cells into the germinal center to achieve exponential increase in the latent viral reservoir during the establishment of chronic infection. Infected germinal center B cells are also the target of viral lymphomagenesis, as most EBV-positive B cell lymphomas bear the signature of the germinal center response. All gammaherpesviruses encode a protein kinase, which, in the case of Kaposi's sarcoma-associated herpesvirus (KSHV) and MHV68, is sufficient and necessary, respectively, to drive B cell differentiation in vivo. In this study, we used the highly tractable MHV68 model of chronic gammaherpesvirus infection to unveil an antagonistic relationship between MHV68 protein kinase and interferon regulatory factor 1 (IRF-1). IRF-1 deficiency had minimal effect on the attenuated lytic replication of the kinase-null MHV68 in vivo. In contrast, the attenuated latent reservoir of the kinase-null MHV68 was partially to fully rescued in IRF-1-/- mice, along with complete rescue of the MHV68-driven germinal center response. Thus, the novel viral protein kinase-IRF-1 antagonism was largely limited to chronic infection dominated by viral latency and was less relevant for lytic replication during acute infection and in vitro. Given the conserved nature of the viral and host protein, the antagonism between the two, as defined in this study, may regulate gammaherpesvirus infection across species. IMPORTANCE Gammaherpesviruses are prevalent pathogens that manipulate physiological B cell differentiation to establish lifelong infection. This manipulation is also involved in gammaherpesvirus-driven B cell lymphomas, as differentiation of latently infected B cells through the germinal center response targets these for transformation. In this study, we define a novel antagonistic interaction between a conserved gammaherpesvirus protein kinase and a host antiviral and tumor suppressor transcription factor. The virus-host antagonism unveiled in this study was critically important to shape the magnitude of gammaherpesvirus-driven germinal center response. In contrast, the virus-host antagonism was far less relevant for lytic viral replication in vitro and during acute infection in vivo, highlighting the emerging concept that nonoverlapping mechanisms shape the parameters of acute and chronic gammaherpesvirus infection.


Assuntos
Infecções por Vírus Epstein-Barr , Gammaherpesvirinae , Infecções por Herpesviridae , Linfoma de Células B , Rhadinovirus , Camundongos , Humanos , Animais , Fator Regulador 1 de Interferon/metabolismo , Proteínas Quinases/metabolismo , Infecção Persistente , Infecções por Herpesviridae/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Gammaherpesvirinae/metabolismo , Rhadinovirus/metabolismo , Latência Viral , Antivirais/metabolismo , Camundongos Endogâmicos C57BL
3.
Proc Natl Acad Sci U S A ; 115(26): 6780-6785, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29891681

RESUMO

Lineage commitment and differentiation into CD4+ T cell subsets reflect an interplay between chromatin regulators and transcription factors (TF). Follicular T cell development is regulated by the Bcl6 TF, which helps determine the phenotype and follicular localization of both CD4+ follicular helper T cells (TFH) and follicular regulatory T cells (TFR). Here we show that Bcl6-dependent control of follicular T cells is mediated by a complex formed between Bcl6 and the Mi-2ß-nucleosome-remodeling deacetylase complex (Mi-2ß-NuRD). Formation of this complex reflects the contribution of the intracellular isoform of osteopontin (OPN-i), which acts as a scaffold to stabilize binding between Bcl6 and the NuRD complex that together regulate the genetic program of both TFH and TFR cells. Defective assembly of the Bcl6-NuRD complex distorts follicular T cell differentiation, resulting in impaired TFR development and skewing of the TFH lineage toward a TH1-like program that includes expression of Blimp1, Tbet, granzyme B, and IFNγ. These findings define a core Bcl6-directed transcriptional complex that enables CD4+ follicular T cells to regulate the germinal center response.


Assuntos
Montagem e Desmontagem da Cromatina , Centro Germinativo/citologia , Linfopoese/fisiologia , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/fisiologia , Proteínas Proto-Oncogênicas c-bcl-6/fisiologia , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Reguladores/citologia , Animais , Linhagem da Célula , Regulação da Expressão Gênica/imunologia , Regulação da Expressão Gênica/fisiologia , Técnicas de Introdução de Genes , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/fisiologia , Osteopontina/biossíntese , Osteopontina/genética , Transcrição Gênica
4.
J Clin Immunol ; 40(3): 447-455, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31993866

RESUMO

Patients with Down syndrome (DS) are characterized by increased susceptibility to autoimmunity and respiratory tract infections that are suggestive of humoral immunity impairment. Here, we sought to determine the follicular helper (Tfh) and follicular regulatory (Tfr) T cell profile in the blood of children with DS. Blood was collected from 24 children with DS, nine of which had autoimmune diseases. Children with DS showed skewed Tfh differentiation towards the CXCR3+ phenotype: Tfh1 and Tfh1/17 subsets were increased, while Tfh2 and Tfh17 subsets were reduced. While no differences in the percentage of Tfr cells were seen, the ratio of Tfh1 and CXCR3+PD-1+ subsets to Tfr cells was significantly increased in the affected children. The excessive polarization towards a CXCR3+ phenotype in children with DS suggests that re-calibration of Tfh subset skewing could potentially offer new therapeutic opportunities for these patients.


Assuntos
Doenças Autoimunes/imunologia , Síndrome de Down/imunologia , Centro Germinativo/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Adolescente , Circulação Sanguínea , Diferenciação Celular , Células Cultivadas , Criança , Feminino , Humanos , Imunidade Humoral , Masculino , Fenótipo , Receptores CXCR3/metabolismo , Equilíbrio Th1-Th2
5.
Eur J Immunol ; 46(5): 1152-61, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26887860

RESUMO

Follicular helper T (Tfh) cells provide crucial help to germinal center B (GCB) cells for proper antibody production, and a specialized subset of regulatory T cells, follicular regulatory T (Tfr) cells, modulate this process. However, Tfr-cell function in the GC is not well understood. Here, we define Tfr cells as a CD4(+) Foxp3(+) CXCR5(hi) PD-1(hi) CD25(low) TIGIT(high) T-cell population. Furthermore, we have used a novel mouse model ("Bcl6FC") to delete the Bcl6 gene in Foxp3(+) T cells and thus specifically deplete Tfr cells. Following immunization, Bcl6FC mice develop normal Tfh- and GCB-cell populations. However, Bcl6FC mice produce altered antigen-specific antibody responses, with reduced titers of IgG and significantly increased IgA. Bcl6FC mice also developed IgG antibodies with significantly decreased avidity to antigen in an HIV-1 gp120 "prime-boost" vaccine model. In an autoimmune lupus model, we observed strongly elevated anti-DNA IgA titers in Bcl6FC mice. Additionally, Tfh cells from Bcl6FC mice consistently produce higher levels of Interferon-γ, IL-10 and IL-21. Loss of Tfr cells therefore leads to highly abnormal Tfh-cell and GCB-cell responses. Overall, our study has uncovered unique regulatory roles for Tfr cells in the GC response.


Assuntos
Citocinas/biossíntese , Centro Germinativo/imunologia , Imunoglobulina G/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Animais , Afinidade de Anticorpos , Autoimunidade , Citocinas/imunologia , DNA/imunologia , Fatores de Transcrição Forkhead/análise , Anticorpos Anti-HIV/biossíntese , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , Imunoglobulina A/biossíntese , Imunoglobulina A/imunologia , Imunoglobulina G/biossíntese , Interferon gama/imunologia , Interleucina-10/imunologia , Interleucinas/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Camundongos , Proteínas Proto-Oncogênicas c-bcl-6/deficiência , Proteínas Proto-Oncogênicas c-bcl-6/genética , Linfócitos T Reguladores/fisiologia , Vacinação
6.
Eur J Immunol ; 46(5): 1101-4, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27109022

RESUMO

T follicular regulatory (Tfr) cells are a subpopulation of Treg cells that have adopted the T follicular helper cell program to localize to the B-cell follicle. Because of the difficulties in generating mouse models in which Tfr cells are selectively affected, determining where and how Tfr cells regulate the germinal center response remains to be resolved. In this issue of the European Journal of Immunology, Dent and colleagues [Eur. J. Immunol. 2016. 46: 1152-1161] describe a simple, elegant mouse model to conditionally delete Tfr cells without impacting on the Treg- and Tfh-cell populations. Their initial studies suggest that Tfr cells have a more complex role than previously thought, particularly with respect to the regulation of immunoglobulin isotype switching to IgA.


Assuntos
Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Animais , Linfócitos B/imunologia , Centro Germinativo/imunologia , Camundongos
7.
Virology ; 597: 110153, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38941745

RESUMO

Gammaherpesviruses are ubiquitous, lifelong pathogens associated with multiple cancers that infect over 95% of the adult population. Increases in viral reactivation, due to stress and other unknown factors impacting the immune response, frequently precedes lymphomagenesis. One potential stressor that could promote viral reactivation and increase viral latency would be the myriad of infections from bacterial and viral pathogens that we experience throughout our lives. Using murine gammaherpesvirus 68 (MHV68), a mouse model of gammaherpesvirus infection, we examined the impact of bacterial challenge on gammaherpesvirus infection. We challenged MHV68 infected mice during the establishment of latency with nontypeable Haemophilus influenzae (NTHi) to determine the impact of bacterial infection on viral reactivation and latency. Mice infected with MHV68 and then challenged with NTHi, saw increases in viral reactivation and viral latency. These data support the hypothesis that bacterial challenge can promote gammaherpesvirus reactivation and latency establishment, with possible consequences for viral lymphomagenesis.


Assuntos
Infecções por Haemophilus , Haemophilus influenzae , Infecções por Herpesviridae , Ativação Viral , Latência Viral , Animais , Haemophilus influenzae/fisiologia , Camundongos , Infecções por Herpesviridae/virologia , Infecções por Haemophilus/microbiologia , Infecções por Haemophilus/virologia , Gammaherpesvirinae/fisiologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Rhadinovirus/fisiologia , Feminino
8.
Mol Ther Nucleic Acids ; 32: 650-666, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37151990

RESUMO

The creation of safe and effective vaccines that induce potent cellular and humoral immune responses against SARS-CoV-2 is urgently needed to end the global COVID-19 epidemic. Here, we developed an alphavirus-derived self-replicating RNA (repRNA)-based vaccine platform encoding the receptor-binding domain (RBD) of SARS-CoV-2 spike glycoprotein. The repRNA triggers prolonged antigen expression compared with conventional mRNA due to the replication machinery of repRNA. To improve the delivery and vaccine efficacy of repRNA, we developed a self-assembling liposome-protamine-RNA (LPR) nanoparticle with highly efficient encapsulation and transfection of repRNA. LPR-repRNA vaccines substantially activated type I interferon response and innate immune signaling pathways. Subcutaneous immunization of LPR-repRNA-RBD led to prolonged antigen expression, stimulation of innate immune cells, and induction of germinal center response in draining lymph nodes. LPR-repRNA-RBD induced antigen-specific T cell responses and skewed cellular immunity toward an effector memory CD8+ T cell response. Immunizations with LPR-repRNA-RBD triggered the production of anti-RBD IgG antibodies and induced neutralizing antibody response against SARS-CoV-2 pseudovirus. LPR-repRNA-RBD vaccines reduced SARS-CoV-2 infection and lung inflammation in mice. Altogether, these data suggest that the LPR-repRNA platform can be a promising avenue for COVID-19 vaccine development.

9.
Biochim Biophys Acta Gene Regul Mech ; 1865(6): 194828, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35643396

RESUMO

In response to T-cell-dependent antigens, antigen-experienced B cells migrate to the center of the B-cell follicle to seed the germinal center (GC) response after cognate interactions with CD4+ T cells. These GC B cells eventually mature into memory and long-lived antibody-secreting plasma cells, thus generating long-lived humoral immunity. Within GC, B cells undergo somatic hypermutation of their B cell receptors (BCR) and positive selection for the emergence of high-affinity antigen-specific B-cell clones. However, this process may be dangerous, as the accumulation of aberrant mutations could result in malignant transformation of GC B cells or give rise to autoreactive B cell clones that can cause autoimmunity. Because of this, better understanding of GC development provides diagnostic and therapeutic clues to the underlying pathologic process. A productive GC response is orchestrated by multiple mechanisms. An emerging important regulator of GC reaction is epigenetic modulation, which has key transcriptional regulatory properties. In this review, we summarize the current knowledge on the biology of epigenetic mechanisms in the regulation of GC reaction and outline its importance in identification of immunotherapy decision making.


Assuntos
Epigênese Genética , Centro Germinativo , Linfócitos B , Diferenciação Celular , Imunidade Humoral
10.
Front Immunol ; 13: 991347, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591274

RESUMO

We have previously shown that the microRNA (miRNA) processor complex consisting of the RNAse Drosha and the DiGeorge Critical Region (DGCR) 8 protein is essential for B cell maturation. To determine whether miRNA processing is required to initiate T cell-mediated antibody responses, we deleted DGCR8 in maturing B2 cells by crossing a mouse with loxP-flanked DGCR8 alleles with a CD23-Cre mouse. As expected, non-immunized mice showed reduced numbers of mature B2 cells and IgG-secreting cells and diminished serum IgG titers. In accordance, germinal centers and antigen-specific IgG-secreting cells were absent in mice immunized with T-dependent antigens. Therefore, DGCR8 is required to mount an efficient T-dependent antibody response. However, DGCR8 deletion in B1 cells was incomplete, resulting in unaltered B1 cell numbers and normal IgM and IgA titers in DGCR8-knock-out mice. Therefore, this mouse model could be used to analyze B1 responses in the absence of functional B2 cells.


Assuntos
MicroRNAs , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Linfócitos T/metabolismo , Centro Germinativo/metabolismo , Imunoglobulina G/metabolismo
11.
mBio ; 12(2)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824206

RESUMO

Gammaherpesviruses establish lifelong infection and are associated with a variety of cancers, including B cell lymphomas. These viruses manipulate the B cell differentiation process to establish lifelong infection in memory B cells. Specifically, gammaherpesviruses infect naive B cells and promote entry of both infected and uninfected naive B cells into germinal centers, where the virus usurps rapid proliferation of germinal center B cells to exponentially increase its cellular latent reservoir. In addition to facilitating the establishment of latent infection, germinal center B cells are thought to be the target of viral transformation. In this study, we have uncovered a novel proviral role of host interleukin 17A (IL-17A), a well-established antibacterial and antifungal factor. Loss of IL-17A signaling attenuated the establishment of chronic gammaherpesvirus infection and gammaherpesvirus-driven germinal center response in a route of inoculation-dependent manner. Further, IL-17A treatment directly supported gammaherpesvirus reactivation and de novo lytic infection. This study is the first demonstration of a multifaceted proviral role of IL-17 signaling.IMPORTANCE Gammaherpesviruses establish lifelong infections in a majority of humans and are associated with B cell lymphomas. IL-17A is a host cytokine that plays a well-established role in the clearance of bacterial and fungal infections; however, the role of IL-17A in viral infections is poorly understood. In this study, we show that IL-17A signaling promoted the establishment of chronic gammaherpesvirus infection following the mucosal route of infection, viral lytic replication, and reactivation from latency. Thus, our study unveils a novel proviral role of IL-17A signaling in gammaherpesvirus infection.


Assuntos
Gammaherpesvirinae/imunologia , Infecções por Herpesviridae/imunologia , Interações Hospedeiro-Patógeno/imunologia , Interleucina-17/imunologia , Transdução de Sinais/imunologia , Animais , Células Cultivadas , Doença Crônica , Feminino , Interações Hospedeiro-Patógeno/genética , Interleucina-17/genética , Macrófagos/imunologia , Macrófagos/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
Front Immunol ; 12: 791100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069572

RESUMO

CD4+CXCR5+Foxp3+ T-follicular regulatory (TFR) cells control the germinal center responses. Like T-follicular helper cells, they express high levels of Nuclear Factor of Activated T-cells c1, predominantly its short isoform NFATc1/αA. Ablation of NFATc1 in Tregs prevents upregulation of CXCR5 and migration of TFR cells into B-cell follicles. By contrast, constitutive active NFATc1/αA defines the surface density of CXCR5, whose level determines how deep a TFR migrates into the GC and how effectively it controls antibody production. As one type of effector Treg, TFR cells express B lymphocyte-induced maturation protein-1 (Blimp-1). Blimp-1 can directly repress Cxcr5 and NFATc1/αA is necessary to overcome this Blimp-1-mediated repression. Interestingly, Blimp-1 even reinforces the recruitment of NFATc1 to Cxcr5 by protein-protein interaction and by those means cooperates with NFATc1 for Cxcr5 transactivation. On the contrary, Blimp-1 is necessary to counterbalance NFATc1/αA and preserve the Treg identity. This is because although NFATc1/αA strengthens the follicular development of Tregs, it bears the inherent risk of causing an ex-Treg phenotype.


Assuntos
Movimento Celular/imunologia , Centro Germinativo/imunologia , Fatores de Transcrição NFATC/imunologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/imunologia , Animais , Movimento Celular/genética , Camundongos , Camundongos Transgênicos , Fatores de Transcrição NFATC/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética
13.
Cell Rep ; 30(3): 611-619.e4, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31968240

RESUMO

The germinal center (GC) response is critical for generating high-affinity humoral immunity and immunological memory, which forms the basis of successful immunization. Control of the GC response is thought to require follicular regulatory T (Tfr) cells, a subset of suppressive Foxp3+ regulatory T cells located within GCs. Relatively little is known about the exact role of Tfr cells within the GC and how they exert their suppressive function. A unique feature of Tfr cells is their reported CXCR5-dependent localization to the GC. Here, we show that the lack of CXCR5 on Foxp3+ regulatory T cells results in a reduced frequency, but not an absence, of GC-localized Tfr cells. This reduction in Tfr cells is not sufficient to alter the magnitude or output of the GC response. This demonstrates that additional, CXCR5-independent mechanisms facilitate Treg cell homing to the GC.


Assuntos
Centro Germinativo/imunologia , Receptores CXCR5/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Fatores de Transcrição Forkhead/metabolismo , Deleção de Genes , Contagem de Linfócitos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia
14.
Viral Immunol ; 33(4): 316-326, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31913773

RESUMO

Gammaherpesviruses are highly prevalent pathogens that establish life-long infection and are associated with diverse malignancies, including lymphoproliferative diseases and B cell lymphomas. Unlike other viruses that either do not infect B cells or infect B cells transiently, gammaherpesviruses manipulate physiological B cell differentiation to establish life-long infection in memory B cells. Disruption of such viral manipulation by genetic or environmental causes is likely to seed viral lymphomagenesis. In this review, we discuss physiological and unique host and viral mechanisms usurped by gammaherpesviruses to fine tune host B cell biology for optimal infection establishment and maintenance.


Assuntos
Linfócitos B/imunologia , Diferenciação Celular/imunologia , Gammaherpesvirinae/imunologia , Infecções por Herpesviridae/imunologia , Interações Hospedeiro-Patógeno/imunologia , Linfócitos B/citologia , Humanos , Ativação Linfocitária/imunologia , Proteínas Virais/imunologia
15.
FEBS J ; 287(14): 2866-2890, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32246891

RESUMO

The immune system plays an essential role in protecting the host from infectious diseases and cancer. Notably, B and T lymphocytes from the adaptive arm of the immune system can co-operate to form long-lived antibody responses and are therefore the main target in vaccination approaches. Nevertheless, protective immune responses must be tightly regulated to avoid hyper-responsiveness and responses against self that can result in autoimmunity. Nuclear receptors (NRs) are perfectly adapted to rapidly alter transcriptional cellular responses to altered environmental settings. Their functional role is associated with both immune deficiencies and autoimmunity. Despite extensive linking of nuclear receptor function with specific CD4 T helper subsets, research on the functional roles and mechanisms of specific NRs in CD4 follicular T helper cells (Tfh) and germinal center (GC) B cells during the germinal center reaction is just emerging. We review recent advances in our understanding of NR regulation in specific cell types of the GC response and discuss their implications for autoimmune diseases such as systemic lupus erythematosus (SLE).


Assuntos
Doenças Autoimunes/patologia , Autoimunidade/imunologia , Centro Germinativo/imunologia , Subpopulações de Linfócitos/imunologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Humanos , Receptores Citoplasmáticos e Nucleares/imunologia
16.
Cell Rep ; 29(7): 1848-1861.e6, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31722202

RESUMO

Follicular regulatory T (TFR) cells are a specialized suppressive subset that controls the germinal center (GC) response and maintains humoral self-tolerance. The mechanisms that maintain TFR lineage identity and suppressive activity remain largely unknown. Here, we show that expression of Blimp1 by FoxP3+ TFR cells is essential for TFR lineage stability, entry into the GC, and expression of regulatory activity. Deletion of Blimp1 in TFR cells reduced FoxP3 and CTLA-4 expression and increased pro-inflammatory cytokines and spontaneous production of autoantibodies, including elevated IgE. Maintenance of TFR stability reflected Blimp1-dependent repression of the IL-23R-STAT3 axis and activation of the CD25-STAT5 pathway, while silenced IL-23R-STAT3 or increased STAT5 activation rescued the Blimp1-deficient TFR phenotype. Blimp1-dependent control of CXCR5/CCR7 expression also regulated TFR homing into the GC. These findings uncover a Blimp1-dependent TFR checkpoint that enforces suppressive activity and acts as a gatekeeper of GC entry.


Assuntos
Regulação da Expressão Gênica/imunologia , Centro Germinativo/imunologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Animais , Linhagem Celular , Centro Germinativo/citologia , Humanos , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/imunologia , Camundongos , Camundongos Transgênicos , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Receptores CCR7/genética , Receptores CCR7/imunologia , Receptores CXCR5/genética , Receptores CXCR5/imunologia , Receptores de Interleucina/genética , Receptores de Interleucina/imunologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/imunologia , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/imunologia , Transdução de Sinais/genética , Linfócitos T Reguladores/citologia
17.
Front Immunol ; 9: 1952, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30258435

RESUMO

Tertiary lymphoid structures (TLS) are frequently observed in target organs of autoimmune diseases. TLS present features of secondary lymphoid organs such as segregated T and B cell zones, presence of follicular dendritic cell networks, high endothelial venules and specialized lymphoid fibroblasts and display the mechanisms to support local adaptive immune responses toward locally displayed antigens. TLS detection in the tissue is often associated with poor prognosis of disease, auto-antibody production and malignancy development. This review focuses on the contribution of TLS toward the persistence of the inflammatory drive, the survival of autoreactive lymphocyte clones and post-translational modifications, responsible for the pathogenicity of locally formed autoantibodies, during autoimmune disease development.


Assuntos
Autoanticorpos/imunologia , Linfócitos B/imunologia , Células Dendríticas Foliculares/imunologia , Imunidade Humoral , Neoplasias/imunologia , Estruturas Linfoides Terciárias/imunologia , Animais , Autoimunidade , Linfócitos B/patologia , Células Dendríticas Foliculares/patologia , Humanos , Neoplasias/patologia , Estruturas Linfoides Terciárias/patologia
18.
F1000Res ; 52016.
Artigo em Inglês | MEDLINE | ID: mdl-27303636

RESUMO

The germinal center response is the delayed but sustained phase of the antibody response that is responsible for producing high-affinity antibodies of the IgG, IgA and/or IgE isotypes. B cells in the germinal center undergo re-iterative cycles of somatic hypermutation of immunoglobulin gene variable regions, clonal expansion, and Darwinian selection for cells expressing higher-affinity antibody variants. Alternatively, selected B cells can terminally differentiate into long-lived plasma cells or into a broad diversity of mutated memory B cells; the former secrete the improved antibodies to fight an infection and to provide continuing protection from re-infection, whereas the latter may jumpstart immune responses to subsequent infections with related but distinct infecting agents. Our understanding of the molecules involved in the germinal center reaction has been informed by studies of human immunodeficiency patients with selective defects in the production of antibodies. Recent studies have begun to reveal how innate immune recognition via Toll-like receptors can enhance the magnitude and selective properties of the germinal center, leading to more effective control of infection by a subset of viruses. Just as early insights into the nature of the germinal center found application in the development of the highly successful conjugate vaccines, more recent insights may find application in the current efforts to develop new generations of vaccines, including vaccines that can induce broadly protective neutralizing antibodies against influenza virus or HIV-1.

19.
Autoimmun Rev ; 14(8): 735-41, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25913138

RESUMO

Regulatory T cells (Tregs) are essential in maintaining tolerance to self. Several lines of evidence indicate that Tregs are functionally impaired in a variety of autoimmune diseases, leading to inefficient regulation of autoimmune T cells. Recent findings also suggest that Tregs are essential in controlling autoreactive B cells. The recently identified follicular regulatory T cell subset (TFR) is thought to regulate the production of autoantibodies in the germinal center (GC) response. Here we provide an update on the role of Tregs in controlling the GC response, and whether defective control over B cell tolerance contributes to autoimmunity.


Assuntos
Autoimunidade , Linfócitos T Reguladores/imunologia , Animais , Doenças Autoimunes/imunologia , Autoimunidade/imunologia , Linfócitos B/imunologia , Centro Germinativo/imunologia , Humanos
20.
Front Immunol ; 5: 271, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24971082

RESUMO

In vitro observations suggest a role for the mouse heterochromatin protein 1γ (HP-1γ) in the immune system. However, it has not been shown if and how HP-1γ contributes to immunity in vivo. Here we show that in mice, HP-1γ positively regulates the germinal center reaction and high-affinity antibody response to thymus (T)-dependent antigens by limiting the size of CD8(+) regulatory T-cell (Treg) compartment without affecting progenitor B- or T-cell-development. Moreover, HP-1γ does not control cell proliferation or class switch recombination. Haploinsufficiency of cbx-3 (gene encoding HP-1γ) is sufficient to expand the CD8(+) Treg population and impair the immune response in mice despite the presence of wild-type HP-1α and HP-1ß. This is the first in vivo evidence demonstrating the non-redundant role of HP-1γ in immunity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA