Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(35): e202306303, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37322862

RESUMO

The operational stability of polymer solar cells is a critical concern with respect to the thermodynamic relaxation of acceptor-donor-acceptor (A-D-A) or A-DA'D-A structured small-molecule acceptors (SMAs) within their blends with polymer donors. Giant molecule acceptors (GMAs) bearing SMAs as subunits offer a solution to this issue, while their classical synthesis via the Stille coupling suffers from low reaction efficiency and difficulty in obtaining mono-brominated SMA, rendering the approach impractical for their large-scale and low-cost preparation. In this study, we present a simple and cost-effective solution to this challenge through Lewis acid-catalyzed Knoevenagel condensation with boron trifluoride etherate (BF3 ⋅ OEt2 ) as catalyst. We demonstrated that the coupling of the monoaldehyde-terminated A-D-CHO unit and the methylene-based A-link-A (or its silyl enol ether counterpart) substrates can be quantitatively achieved within 30 minutes in the presence of acetic anhydride, affording a variety of GMAs connected via the flexible and conjugated linkers. The photophysical properties was fully studied, yielding a high device efficiency of over 18 %. Our findings offer a promising alternative for the modular synthesis of GMAs with high yields, easier work up, and the widespread application of such methodology will undoubtedly accelerate the progress of stable polymer solar cells.

2.
Adv Mater ; 36(33): e2404660, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38890789

RESUMO

In the recent advances of organic solar cells (OSCs), quinoxaline (Qx)-based nonfullerene acceptors (QxNFAs) have attracted lots of attention and enabled the recorded power conversion efficiency approaching 20%. As an excellent electron-withdrawing unit, Qx possesses advantages of many modifiable sites, wide absorption range, low reorganization energy, and so on. To develop promising QxNFAs to further enhance the photovoltaic performance of OSCs, it is necessary to systematically summarize the QxNFAs reported so far. In this review, all the focused QxNFAs are classified into five categories as following: SM-Qx, YQx, fused-YQx, giant-YQx, and polymer-Qx according to the molecular skeletons. The molecular design concepts, relationships between the molecular structure and optoelectronic properties, intrinsic mechanisms of device performance are discussed in detail. At the end, the advantages of this kind of materials are summed up, the molecular develop direction is prospected, the challenges faced by QxNFAs are given, and constructive solutions to the existing problems are advised. Overall, this review presents unique viewpoints to conquer the challenge of QxNFAs and thus boost OSCs development further toward commercial applications.

3.
ACS Appl Mater Interfaces ; 16(6): 7317-7326, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38305907

RESUMO

Designing giant-molecule acceptors is deemed as an up-and-coming strategy to construct stable organic solar cells (OSCs) with high performance. Herein, two giant dimeric acceptors, namely, DYV and DYFV, have been designed and synthesized by linking two Y-series derivatives with a vinyl unit. DYFV exhibits more red-shifted absorption, down-shifted energy levels, and enhanced intermolecular packing than DYV because the intramolecular noncovalent interaction (H···F) of DYFV leads to better coplanarity of the backbone. The D18:DYFV film owns a distinct nanofibrous nanophase separation structure, a more dominant face-on orientation, and more balanced carrier mobilities. Therefore, the D18:DYFV OSC achieves a higher photoelectron conversion efficiency of 17.88% and a longer-term stability with a t80 over 45,000 h compared with the D18:DYV device. The study demonstrates that the intramolecular noncovalent interaction is a superior strategy to design giant-molecule acceptors and boost the photovoltaic performance and stability of the OSCs.

4.
ChemSusChem ; : e202401138, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020482

RESUMO

With the rapid development of non-fullerene acceptors (NFAs), the power conversion efficiency (PCE) of organic solar cells (OSCs) is increasing. According to their different chemical structures, NFAs can initially be divided into two categories: small molecule acceptors (SMAs) and polymerized small molecule acceptors (PSMAs). Due to the strong absorption capacity and controllable energy levels, the PCE of devices based on SMAs has approached 20%. Compared with SMAs, PSMAs have advantages in stability and flexibility, and the PCE of PSMA-based devices has exceeded 18%. However, the higher synthesis cost and lower batch repeatability hinder its further development. Recently, the concept of giant molecule acceptors (GMAs) has been proposed. These materials have a clear molecular structure and are considered novel acceptor materials that combine the advantages of SMAs and PSMAs. Currently, the PCE of devices based on GMAs has exceeded 19%. In this review, we will introduce the latest developments in SMAs, PSMAs, and GMAs. Then, the advantages of GMAs and the relationship between their structure and performance will be analyzed. In the end, perspectives on the opportunities and challenges of these materials are provided, which could inspire further development of NFAs for advanced OSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA