RESUMO
NiOx-based inverted perovskite solar cells (PSCs) have attracted growing attention due to their low cost and large-scale application potential. However, the efficiency and stability of inverted planar heterojunction PSCs is still unsatisfactory owing to insufficient charge-extraction caused by undesirable interfacial contact between perovskite and NiOx hole transport layers (HTLs). Herein an interfacial passivation strategy with guanidinium salts (guanidinium thiocyanate (GuASCN), guanidine hydrobromide (GuABr), guanidine hydriodate (GuAI)) as passivator is employed to solve this problem. We systematically study the effect of various guanidinium salts on the crystallinity, morphology, and photophysical properties of perovskite films. Guanidine salt as interfacial passivator can decrease interface resistance, reduce carrier non-radiative recombination, and boost carrier extraction. Notably, the GuABr-treated unencapsulated devices can still maintain more than 90 % of their initial PCE after aging for 1600â h at 16-25 °C and 35 %-50 % relative humidity in ambient conditions. This work reveals the significance of counterions in improving the photovoltaic performance and stability of PSCs.
RESUMO
The synthesis and characterization of six new substituted guanidium tetrahydroxidohexaoxidopentaborate(1-) salts are reported: [C(NH2)2(NHMe)][B5O6(OH)4]·H2O (1), [C(NH2)2(NH{NH2})][B5O6(OH)4] (2), [C(NH2)2(NMe2)][B5O6(OH)4] (3), [C(NH2)(NMe2)2][B5O6(OH)4] (4), [C(NHMe)(NMe2)2][B5O6(OH)4]·B(OH)3 (5), and [TBDH][B5O6(OH)4] (6) (TBD = 1,5,7-triazabicyclo [4.4.0]dec-5-ene). Compounds 1-6 were prepared as crystalline salts from basic aqueous solution via self-assembly processes from B(OH)3 and the appropriate substituted cation. Compounds 1-6 were characterized by spectroscopic (NMR and IR) and by single-crystal XRD studies. A thermal (TGA) analysis on compounds 1-3 and 6 demonstrated that they thermally decomposed via a multistage process to B2O3 at >650 °C. The low temperature stage (<250 °C) was endothermic and corresponded to a loss of H2O. Reactant stoichiometry, solid-state packing, and H-bonding interactions are all important in assembling these structures. An analysis of H-bonding motifs in known unsubstituted guanidinium salts [C(NH2)3]2[B4O5(OH)4]·2H2O, [C(NH2)3][B5O6(OH)4]·H2O, and [C(NH2)3]3[B9O12(OH)6] and in compounds 1-6 revealed that two important H-bonding R22(8) motifs competed to stabilize the observed structures. The guanidinium cation formed charge-assisted pincer cation-anion H-bonded rings as a major motif in [C(NH2)3]2[B4O5(OH)4]·2H2O and [C(NH2)3]3[B9O12(OH)6], whereas the anion-anion ring motif was dominant in [C(NH2)3][B5O6(OH)4]·H2O and in compounds 1-6. This behaviour was consistent with the stoichiometry of the salt and packing effects also strongly influencing their solid-state structures.
RESUMO
Herein, novel hyperbranched polyamidoamine guanidinium salts (GS-h-PAMAM) and two cationic acrylamide copolymers P(AM-DAC-ABSM) and P(AM-DAC-AMTU) were successfully prepared. Then, self-assembly supramolecular systems were synthesized by directly mixing GS-h-PAMAM with copolymers in aqueous solution, and the mechanism of the self-assembly process was speculated. FT-IR, NMR, and SEM were used for structural confirmation. Furthermore, the excellent solution properties revealed that the supramolecular systems had potential application in clay hydration inhibitors. More importantly, utilizing functionalized hyperbranched polyamidoamine in the synthesis self-assembly supramolecular systems was an effective strategy for expanding their application fields and developing new functional materials, providing a powerful reference for the next study.
RESUMO
Competitive binding like that in immunoassays is the principle behind the chemosensor based on receptor 1, which was used to measure the concentration of citrate (2) in a series of common beverages. Citrate displaces the fluorescent colorimetric probe 5-carboxylfluorescein (3) from 1, and the process can be monitored by UV or fluorescence spectroscopy.