Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 32(2): 384-394, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38087779

RESUMO

Hematopoietic stem/progenitor cell (HSPC)-based anti-HIV-1 gene therapy holds great promise to eradicate HIV-1 or to provide long-term remission through a continuous supply of anti-HIV-1 gene-modified cells without ongoing antiretroviral therapy. However, achieving sufficient engraftment levels of anti-HIV gene-modified HSPC to provide therapeutic efficacy has been a major limitation. Here, we report an in vivo selection strategy for anti-HIV-1 gene-modified HSPC by introducing 6-thioguanine (6TG) chemoresistance through knocking down hypoxanthine-guanine phosphoribosyl transferase (HPRT) expression using RNA interference (RNAi). We developed a lentiviral vector capable of co-expressing short hairpin RNA (shRNA) against HPRT alongside two anti-HIV-1 genes: shRNA targeting HIV-1 co-receptor CCR5 and a membrane-anchored HIV-1 fusion inhibitor, C46, for efficient in vivo selection of anti-HIV-1 gene-modified human HSPC. 6TG-mediated preconditioning and in vivo selection significantly enhanced engraftment of HPRT-knockdown anti-HIV-1 gene-modified cells (>2-fold, p < 0.0001) in humanized bone marrow/liver/thymus (huBLT) mice. Viral load was significantly reduced (>1 log fold, p < 0.001) in 6TG-treated HIV-1-infected huBLT mice compared to 6TG-untreated mice. We demonstrated that 6TG-mediated preconditioning and in vivo selection considerably improved engraftment of HPRT-knockdown anti-HIV-1 gene-modified HSPC and repopulation of anti-HIV-1 gene-modified hematopoietic cells in huBLT mice, allowing for efficient HIV-1 inhibition.


Assuntos
HIV-1 , Transplante de Células-Tronco Hematopoéticas , Humanos , Camundongos , Animais , HIV-1/fisiologia , Hipoxantina Fosforribosiltransferase/genética , Hipoxantina Fosforribosiltransferase/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Medula Óssea/metabolismo , Tioguanina/metabolismo , Tioguanina/farmacologia , RNA Interferente Pequeno/genética
2.
Mol Ther ; 31(3): 657-675, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36457248

RESUMO

Lysosomal storage diseases (LSDs) are multisystem inherited metabolic disorders caused by dysfunctional lysosomal activity, resulting in the accumulation of undegraded macromolecules in a variety of organs/tissues, including the central nervous system (CNS). Treatments include enzyme replacement therapy, stem/progenitor cell transplantation, and in vivo gene therapy. However, these treatments are not fully effective in treating the CNS as neither enzymes, stem cells, nor viral vectors efficiently cross the blood-brain barrier. Here, we review the latest advancements in improving delivery of different therapeutic agents to the CNS and comment upon outstanding questions in the field of neurological LSDs.


Assuntos
Barreira Hematoencefálica , Doenças por Armazenamento dos Lisossomos , Humanos , Barreira Hematoencefálica/metabolismo , Doenças por Armazenamento dos Lisossomos/terapia , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Sistema Nervoso Central/metabolismo , Terapia de Reposição de Enzimas , Terapia Genética/métodos
3.
Mol Biol Rep ; 50(1): 121-132, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36315330

RESUMO

BACKGROUND: Extrinsic molecular mechanisms that regulate hematopoietic stem/progenitor cell (HSPC) aging are still poorly understood, and a potential protective medication needs to be explored. MATERIALS AND METHODS: The senescent parameters of hematopoietic cells and bone marrow stromal cells (BMSCs) including cell cycle analysis, senescence-associated SA-ß-gal staining and signals, hematopoietic factors and cellular junction were analyzed in femur and tibia of rats. Furthermore, Sca-1+ HSPCs and BMSCs co-culture system was established to evaluate the direct effects of BMSC feeder layer to HSPCs. Oxidative DNA damage indicators in Sca-1+ HSCs and senescence-associated secretory phenotype (SASP) of BMSCs, gap junction intercellular communication between BMSCs, osteogenesis/adipogenisis differentiation balance of BMSCs were detected. RESULTS: In the D-gal pre-administrated rats, ASP treatment rescued senescence of hematopoietic cells and BMSCs, reserved CFU-GEMM; also, ASP treatment attenuated stromal oxidative load, ameliorated SCF, CXCL12, and GM-CSF production, increased Connexin-43 (Cx43) expression. BMSCs and Sca-1+ HSPCs co-cultivation demonstrated that ASP treatment prevented oxidative DNA damage response in co-cultured Sca-1+ HSPCs induced by D-gal pre-administration of feeder layer and the underlying mechanism may be related to ASP ameliorating feeder layer dysfunction due to D-gal induced senescence via inhibiting secretion of IL-1, IL-6, TNF-α, and RANTES, enhancing Cx43-mediated intercellular communication, improving Runx2 expression whereas decreasing PPARγ expression in BMSCs. CONCLUSION: The antioxidant property of ASP may provide a stroma-mediated potential therapeutic strategy for HSPC aging.


Assuntos
Angelica sinensis , Ratos , Animais , Galactose , Conexina 43 , Senescência Celular , Estresse Oxidativo , Envelhecimento , Polissacarídeos/farmacologia
4.
Acta Biochim Biophys Sin (Shanghai) ; 55(10): 1630-1639, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37381672

RESUMO

Umbilical cord blood (UCB) is an advantageous source for hematopoietic stem/progenitor cell (HSPC) transplantation, yet the current strategies for large-scale and cost-effective UCB-HSPC preparation are still unavailable. To overcome these obstacles, we systematically evaluate the feasibility of our newly identified CH02 peptide for ex vivo expansion of CD34 + UCB-HSPCs. We herein report that the CH02 peptide is specifically enriched in HSPC proliferation via activating the FLT3 signaling. Notably, the CH02-based cocktails are adequate for boosting 12-fold ex vivo expansion of UCB-HSPCs. Meanwhile, CH02-preconditioned UCB-HSPCs manifest preferable efficacy upon wound healing in diabetic mice via bidirectional orchestration of proinflammatory and anti-inflammatory factors. Together, our data indicate the advantages of the CH02-based strategy for ex vivo expansion of CD34 + UCB-HSPCs, which will provide new strategies for further development of large-scale HSPC preparation for clinical purposes.


Assuntos
Diabetes Mellitus Experimental , Transplante de Células-Tronco Hematopoéticas , Animais , Camundongos , Sangue Fetal , Células-Tronco Hematopoéticas , Antígenos CD34 , Moléculas de Adesão Celular , Peptídeos/farmacologia , Células Cultivadas
5.
Stem Cells ; 39(5): 636-649, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33480126

RESUMO

Angiotensin-converting enzyme (ACE), a key element of the renin-angiotensin system (RAS), has recently been identified as a new marker of both adult and embryonic human hematopoietic stem/progenitor cells (HSPCs). However, whether a full renin-angiotensin pathway is locally present during the hematopoietic emergence is still an open question. In the present study, we show that this enzyme is expressed by hematopoietic progenitors in the developing mouse embryo. Furthermore, ACE and the other elements of RAS-namely angiotensinogen, renin, and angiotensin II type 1 (AT1) and type 2 (AT2) receptors-are expressed in the paraaortic splanchnopleura (P-Sp) and in its derivative, the aorta-gonad-mesonephros region, both in human and mouse embryos. Their localization is compatible with the existence of a local autocrine and/or paracrine RAS in these hemogenic sites. in vitro perturbation of the RAS by administration of a specific AT1 receptor antagonist inhibits almost totally the generation of blood CD45-positive cells from dissected P-Sp, implying that angiotensin II signaling is necessary for the emergence of hematopoietic cells. Conversely, addition of exogenous angiotensin II peptide stimulates hematopoiesis in culture, with an increase in the number of immature c-Kit+ CD41+ CD31+ CD45+ hematopoietic progenitors, compared to the control. These results highlight a novel role of local-RAS during embryogenesis, suggesting that angiotensin II, via activation of AT1 receptor, promotes the emergence of undifferentiated hematopoietic progenitors.


Assuntos
Angiotensina II/genética , Angiotensinogênio/genética , Células-Tronco Hematopoéticas/citologia , Receptor Tipo 1 de Angiotensina/genética , Sistema Renina-Angiotensina/genética , Animais , Aorta/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Transplante de Células-Tronco Hematopoéticas , Humanos , Antígenos Comuns de Leucócito/genética , Camundongos , Peptídeos/farmacologia , Peptidil Dipeptidase A/genética , Receptor Tipo 2 de Angiotensina/genética , Renina/genética , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/citologia
6.
Int J Mol Sci ; 23(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35216446

RESUMO

Human hematopoietic stem/progenitor cell (HSPC)-based gene therapy is a promising direction for curing HIV-1-infected individuals. The zinc finger protein (2LTRZFP) designed to target the 2-LTR-circle junction of HIV-1 cDNA was previously reported as an intracellular antiviral molecular scaffold that prevents HIV integration. Here, we elucidate the efficacy and safety of using 2LTRZFP in human CD34+ HSPCs. We transduced 2LTRZFP which has the mCherry tag (2LTRZFPmCherry) into human CD34+ HSPCs using a lentiviral vector. The 2LTRZFPmCherry-transduced HSPCs were subsequently differentiated into macrophages. The expression levels of pro-apoptotic proteins of the 2LTRZFPmCherry-transduced HSPCs showed no significant difference from those of the non-transduced control. Furthermore, the 2LTRZFPmCherry-transduced HSPCs were successfully differentiated into mature macrophages, which had normal phagocytic function. The cytokine secretion assay demonstrated that 2LTRZFPmCherry-transduced CD34+ derived macrophages promoted the polarization towards classically activated (M1) subtypes. More importantly, the 2LTRZFPmCherry transduced cells significantly exhibited resistance to HIV-1 integration in vitro. Our findings demonstrate that the 2LTRZFPmCherry-transduced macrophages were found to be functionally and phenotypically normal, with no adverse effects of the anti-HIV-1 scaffold. Our data suggest that the anti-HIV-1 integrase scaffold is a promising antiviral molecule that could be applied to human CD34+ HSPC-based gene therapy for AIDS patients.


Assuntos
Infecções por HIV/metabolismo , HIV-1/patogenicidade , Células-Tronco Hematopoéticas/metabolismo , Macrófagos/metabolismo , Células-Tronco/metabolismo , Dedos de Zinco/fisiologia , Antígenos CD34/metabolismo , Terapia Genética/métodos , Humanos
7.
Molecules ; 26(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915948

RESUMO

Hematopoietic stem and progenitor cell (HSPC) transplantation is a curative treatment of hematological disorders that has been utilized for several decades. Although umbilical cord blood (UCB) is a promising source of HSPCs, the low dose of HSPCs in these preparations limits their use, prompting need for ex vivo HSPC expansion. To establish a more efficient method to expand UCB HSPCs, we developed the bioactive peptide named SL-13R and cultured UCB HSPCs (CD34+ cells) with SL-13R in animal component-free medium containing a cytokine cocktail. Following 9 days of culture with SL-13R, the numbers of total cells, CD34+, CD38- cells, and hematopoietic stem cell (HSC)-enriched cells were significantly increased relative to control. Transplantation of cells cultured with SL-13R into immunodeficient NOD/Shi-scid/IL-2Rγ knockout mice confirmed that they possess long-term reconstitution and self-renewal ability. AHNAK, ANXA2, and PLEC all interact with SL-13R. Knockdown of these genes in UCB CD34+ cells resulted in reduced numbers of hematopoietic colonies relative to SL-13R-treated and non-knockdown controls. In summary, we have identified a novel bioactive peptide SL-13R promoting expansion of UCB CD34+ cells with long-term reconstitution and self-renewal ability, suggesting its clinical use in the future.


Assuntos
Sangue Fetal/citologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Antígenos CD34/metabolismo , Biomarcadores , Proteínas de Transporte , Técnicas de Cultura de Células , Diferenciação Celular , Autorrenovação Celular , Células Cultivadas , Imunofluorescência , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imunofenotipagem , Camundongos , Ligação Proteica
8.
Am J Physiol Endocrinol Metab ; 316(2): E210-E220, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30512990

RESUMO

Obesity-induced inflammation is associated with increased risk for colorectal cancer (CRC). The role of diet and exercise in modulating increased CRC risk in obesity and the potential role of altered hematopoiesis as a contributor to these effects remain unknown. The purpose of this study was to examine how weight loss induced during CRC induction with or without exercise alters CRC initiation and its relationship to altered hematopoiesis. Mice consumed either a control (CON) or a high-fat diet to induce obesity. All mice were then placed on the control diet during CRC induction with azoxymethane (AOM). Following AOM injection, mice originally on the high-fat diet were randomized into sedentary (HF-SED) or exercise trained (HF-EX) conditions. At euthanasia, body weight and fat mass were similar among all three groups ( P < 0.05). Compared with CON and HF-EX, HF-SED developed increased content of preneoplastic lesions ( P < 0.05), and HF-SED had significantly increased markers of colon inflammation compared with CON. Compared with both CON and HF-EX, HF-SED had decreased content of short-term hematopoietic stem cells and increased content of common myeloid progenitor cells (both P < 0.05). Similarly, HF-SED had increased bone marrow adiposity compared with CON and HF-EX ( P < 0.05), and proteomics analysis revealed an increased marker of bone marrow inflammation in HF-SED compared with CON and HF-EX. Our results suggest that the early removal of a high-fat diet reduces CRC incidence when combined with an exercise training intervention. This reduction in risk was related to lower colon inflammation with anti-inflammatory changes in hematopoiesis induced by exercise.


Assuntos
Medula Óssea/metabolismo , Neoplasias do Colo/metabolismo , Hematopoese , Inflamação/metabolismo , Neoplasias Experimentais/metabolismo , Obesidade/metabolismo , Condicionamento Físico Animal , Comportamento Sedentário , Tecido Adiposo/metabolismo , Animais , Azoximetano/toxicidade , Carcinógenos/toxicidade , Neoplasias do Colo/induzido quimicamente , Dieta Hiperlipídica , Células-Tronco Hematopoéticas , Camundongos , Células Progenitoras Mieloides , Neoplasias Experimentais/induzido quimicamente , Proteômica , Distribuição Aleatória
9.
Stem Cells ; 35(3): 777-786, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27733012

RESUMO

Previously we have shown that loss of non-canonical NF-κB signaling impairs self-renewal of hematopoietic stem/progenitor cells (HSPCs). This prompted us to investigate whether persistent activation of the non-canonical NF-κB signaling will have supportive effects on HSPC self-renewal. NF-κB-inducing kinase (NIK) is an important kinase that mainly activates the non-canonical pathway through directly phosphorylating IKKα. In contrast to our expectations, constitutive activation of NIK in the hematopoietic system leads to bone marrow (BM) failure and postnatal lethality due to intrinsic impairment of HSPC self-renewal and extrinsic disruption of BM microenvironment through enhancing osteoclastogenesis. The impaired HSPC function is associated with reduced cell proliferation and increased apoptosis and inflammatory cytokine responses. RNAseq analysis of control and NIK-activated HSPCs reveals that these effects are through non-canonical NF-κB signaling without significant changes in the canonical pathway. Gene set expression analysis of RNAseq data reveals globally decreased stem cell signature, increased maturation signature, and increased inflammatory responses. Many genes (Mpl, Tifab, Emcn, Flt3, Bcl2, and others) that regulate HSPC self-renewal, lineage commitment, and apoptosis are significantly downregulated-and those genes that regulate inflammatory responses and cell cycle inhibition (Cdkn2a and Cdkn2b) are significantly upregulated-by activation of NIK. Importantly, our data demonstrate that activation of NIK-non-canonical signaling has distinct phenotypes-smaller spleen size, decreased white blood cell counts, and reduced HSPC proliferation-compared to activation of canonical signaling. Collectively, these data indicate that the balanced non-canonical NF-κB signaling is essential for maintaining normal hematopoiesis and NIK-non-canonical signaling contributes to the development of BM failure. Stem Cells 2017;35:777-786.


Assuntos
Medula Óssea/patologia , Autorrenovação Celular , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/genética , Linhagem da Célula/genética , Proliferação de Células , Autorrenovação Celular/genética , Microambiente Celular/genética , Citocinas/metabolismo , Ativação Enzimática , Hematopoese/genética , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Regulação para Cima/genética , Quinase Induzida por NF-kappaB
10.
Stem Cells ; 34(8): 2145-56, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27090492

RESUMO

Hematopoietic stem/progenitor cell (HSPC) mobilization is an essential homeostatic process regulated by the interaction of cellular and molecular components in bone marrow niches. It has been shown by others that neurotransmitters released from the sympathetic nervous system regulate HSPC egress from bone marrow to peripheral blood. In this study, we investigate the functional role of neuropeptide Y (NPY) on this process. NPY deficient mice had significantly impaired HSPC mobilization due to increased expression of HSPC maintenance factors by reduction of matrix metalloproteinase-9 (MMP-9) activity in bone marrow. Pharmacological or endogenous elevation of NPY led to decrease of HSPC maintenance factors expression by activating MMP-9 in osteoblasts, resulting in HSPC mobilization. Mice in which the Y1 receptor was deleted in osteoblasts did not exhibit HSPC mobilization by NPY. Furthermore, NPY treatment in ovariectomized mice caused reduction of bone loss due to HSPC mobilization. These results suggest a new role of NPY on HSPC mobilization, as well as the potential therapeutic application of this neuropeptide for stem cell-based therapy. Stem Cells 2016;34:2145-2156.


Assuntos
Mobilização de Células-Tronco Hematopoéticas , Metaloproteinase 9 da Matriz/metabolismo , Neuropeptídeo Y/metabolismo , Osteoblastos/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Animais , Osso e Ossos/metabolismo , Quimiotaxia , Feminino , Homeostase , Camundongos Endogâmicos C57BL , Neuropeptídeo Y/deficiência , Osteoblastos/citologia , Osteoblastos/enzimologia , Receptores CXCR4/metabolismo
11.
Biotechnol Lett ; 38(1): 175-81, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26346661

RESUMO

OBJECTIVE: To investigate the expansion of hematopoietic stem/progenitor cells (HSPCs) from umbilical cord blood using extracellular matrix (ECM) protein-coated three-dimensional hierarchical scaffolds. RESULTS: The expansion of HSPCs was evaluated through total nucleated cell (TNC) expansion, immuno-phenotypic analysis, and clonogenic ability. After 7 days of culture, three-dimensional cultures with fibronectin-coated scaffolds achieved the highest fold increase in TNCs (164 ± 6.9 fold) and the highest CD45(+)CD34(+) (35 %) and CD34(+)CD38(-) (32 %) ratios. CONCLUSION: Three-dimensional hierarchical scaffolds were coated with ECM protein to simulate a biomimetic environment or niche, and had a significant effect on the expansion potential of HSPCs without changing their phenotype.


Assuntos
Materiais Biocompatíveis/síntese química , Técnicas de Cultura de Células/métodos , Fibronectinas/metabolismo , Células-Tronco Hematopoéticas/citologia , Cordão Umbilical/citologia , ADP-Ribosil Ciclase 1/metabolismo , Antígenos CD34/metabolismo , Técnicas de Cultura de Células/instrumentação , Proliferação de Células , Células-Tronco Hematopoéticas/imunologia , Humanos , Antígenos Comuns de Leucócito/metabolismo , Nicho de Células-Tronco , Propriedades de Superfície
13.
Int J Mol Sci ; 17(6)2016 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-27294914

RESUMO

Stem cell senescence is an important and current hypothesis accounting for organismal aging, especially the hematopoietic stem cell (HSC). Ginsenoside Rg1 is the main active pharmaceutical ingredient of ginseng, which is a traditional Chinese medicine. This study explored the protective effect of ginsenoside Rg1 on Sca-1⁺ hematopoietic stem/progenitor cells (HSC/HPCs) in a mouse model of d-galactose-induced aging. The mimetic aging mouse model was induced by continuous injection of d-gal for 42 days, and the C57BL/6 mice were respectively treated with ginsenoside Rg1, Vitamin E or normal saline after 7 days of d-gal injection. Compared with those in the d-gal administration alone group, ginsenoside Rg1 protected Sca-1⁺ HSC/HPCs by decreasing SA-ß-Gal and enhancing the colony forming unit-mixture (CFU-Mix), and adjusting oxidative stress indices like reactive oxygen species (ROS), total anti-oxidant (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-px) and malondialdehyde (MDA). In addition, ginsenoside Rg1 decreased ß-catenin and c-Myc mRNA expression and enhanced the phosphorylation of GSK-3ß. Moreover, ginsenoside Rg1 down-regulated advanced glycation end products (AGEs), 4-hydroxynonenal (4-HNE), phospho-histone H2A.X (r-H2A.X), 8-OHdG, p16(Ink4a), Rb, p21(Cip1/Waf1) and p53 in senescent Sca-1⁺ HSC/HPCs. Our findings indicated that ginsenoside Rg1 can improve the resistance of Sca-1⁺ HSC/HPCs in a mouse model of d-galactose-induced aging through the suppression of oxidative stress and excessive activation of the Wnt/ß-catenin signaling pathway, and reduction of DNA damage response, p16(Ink4a)-Rb and p53-p21(Cip1/Waf1) signaling.


Assuntos
Envelhecimento/metabolismo , Antioxidantes/farmacologia , Ginsenosídeos/farmacologia , Células-Tronco Hematopoéticas/metabolismo , Estresse Oxidativo , Via de Sinalização Wnt , Envelhecimento/efeitos dos fármacos , Animais , Galactose/farmacologia , Glutationa Peroxidase/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Histonas/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Vitamina E/farmacologia , Vitaminas/farmacologia , beta Catenina/metabolismo
14.
Clin Exp Immunol ; 180(3): 361-70, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25683099

RESUMO

Immune-mediated destruction of haematopoietic stem/progenitor cells (HSPCs) plays a central role in the pathophysiology of acquired aplastic anaemia (aAA). Dysregulated CD8(+) cytotoxic T cells, CD4(+) T cells including T helper type 1 (Th1), Th2, regulatory T cells and Th17 cells, natural killer (NK) cells and NK T cells, along with the abnormal production of cytokines including interferon (IFN)-γ, tumour necrosis factor (TNF)-α and transforming growth factor (TGF)-ß, induce apoptosis of HSPCs, constituting a consistent and defining feature of severe aAA. Alterations in the polymorphisms of TGF-ß, IFN-γ and TNF-α genes, as well as certain human leucocyte antigen (HLA) alleles, may account for the propensity to immune-mediated killing of HSPCs and/or ineffective haematopoiesis. Although the inciting autoantigens remain elusive, autoantibodies are often detected in the serum. In addition, recent studies provide genetic and molecular evidence that intrinsic and/or secondary deficits in HSPCs and bone marrow mesenchymal stem cells may underlie the development of bone marrow failure.


Assuntos
Anemia Aplástica/etiologia , Anemia Aplástica/metabolismo , Anemia Aplástica/terapia , Animais , Citocinas/metabolismo , Suscetibilidade a Doenças/imunologia , Predisposição Genética para Doença , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imunidade Inata , Imunomodulação , Células-Tronco Mesenquimais/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
15.
Cytometry B Clin Cytom ; 106(1): 35-44, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37933409

RESUMO

INTRODUCTION: The CD34+ CD38- population in bone marrow includes hematopoietic stem/progenitor cells. Recently, in acute myeloid leukemia, the focus has shifted to flow cytometry analysis targeting CD34+ CD38- leukemic cells due to their effectiveness in minimal/measurable residual disease detection and prognosis prediction. Nevertheless, the immunophenotype and cell frequency of these cells in the bone marrow, in the absence of leukemic cells, remains unknown. We aimed to evaluate detailed characteristics of CD34+ CD38- cells in both normal and leukemic cells by flow cytometry. METHODS: We compared the cell frequency and immunophenotype of the CD34+ CD38- fraction in the following groups: patients with idiopathic thrombocytopenic purpura and malignant lymphoma as controls (n = 17), post-treatment patients without abnormal blasts (n = 35), and patients with myeloid malignancies (n = 86). The comparison was based on the presence or absence of CD45RA expression, a marker commonly used to prospectively isolate lymphoid-primed cell populations within the CD34+ CD38- fraction. RESULTS: The CD34+ CD38- CD45RA+ cell population exhibited a significant expansion in bone marrow without leukemic cells 1 month after cord blood transplantation and in various type of myeloid malignancies, compared to the control group (p < 0.01). Continuous CD45RA expression and notable expansion of the CD34+ CD38- CD45RA- population were exclusively observed in myelodysplastic syndrome-related diseases. The CD34+ CD38- CD45RA+ population displayed frequent expression of various markers in both leukemic and non-leukemic cells, in contrast to the CD34+ CD38- CD45RA- population. CONCLUSIONS: The CD34+ CD38- fraction should be carefully evaluated considering the nature of normal hematopoietic precursor cells, their cell frequency and immunophenotype, including CD45RA expression pattern, for improving the accuracy of myeloid malignancy diagnosis.


Assuntos
Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , ADP-Ribosil Ciclase 1/metabolismo , Citometria de Fluxo , Antígenos CD34/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/patologia , Antígenos Comuns de Leucócito/metabolismo , Moléculas de Adesão Celular/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasia Residual/diagnóstico
16.
Biomolecules ; 14(9)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39334913

RESUMO

Stimulating erythropoiesis is essential in the treatment of various types of anemia. Sheng Xue Ning (SXN) is commonly used in China as an iron supplement to treat iron deficiency anemia, renal anemia, and anemia in pregnancy. This research reports a novel effect of SXN in enhancing the proliferation of hematopoietic stem/progenitor cell (HSPC) to promote erythropoiesis in the bone marrow, which is distinct from conventional iron supplements that primarily aid in the maturation of red blood cells. Employing a model of hematopoietic dysfunction induced by X-ray exposure, we evaluated the efficacy of SXN in restoring hematopoietic function. SXN significantly promoted the recovery of peripheral erythroid cells and enhanced the proliferation and differentiation of Lin-/c-KIT+/Sca-1+ HSPC in mice exposed to X-ray irradiation. Our results showed that SXN elevated the expression of stem cell factor (SCF) and activated the SCF/c-KIT/PI3K/AKT signaling pathway, facilitating the proliferation and differentiation of HSPC. In vitro, SXN markedly enhanced the proliferation of bone marrow nucleated cell (BMNC) and the colony-forming capacity of BFU-E, CFU-E, and CFU-GM, while also elevating the expression of proteins involved in the SCF/c-KIT/PI3K/AKT pathway in BMNC. Additionally, SXN enhanced the proliferation and differentiation of mesenchymal stem cell (MSC) and increased SCF secretion. In conclusion, SXN demonstrates the capacity to enhance erythropoiesis by upregulating SCF expression, thereby promoting HSPC proliferation and differentiation via the SCF/c-KIT/PI3K/AKT pathway. SXN may offer a new strategy for improving the activity of HSPC and promoting erythropoiesis in the treatment of hematopoiesis disorders.


Assuntos
Diferenciação Celular , Proliferação de Células , Eritropoese , Células-Tronco Hematopoéticas , Transdução de Sinais , Fator de Células-Tronco , Animais , Eritropoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Fator de Células-Tronco/metabolismo , Fator de Células-Tronco/farmacologia , Camundongos , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo
17.
Front Cell Infect Microbiol ; 13: 1189805, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346032

RESUMO

The human betaherpesviruses including human cytomegalovirus (HCMV), human herpesvirus (HHV)-6a and HHV-6b, and HHV-7 infect and establish latency in CD34+ hematopoietic stem and progenitor cells (HPCs). The diverse repertoire of HPCs in humans and the complex interactions between these viruses and host HPCs regulate the viral lifecycle, including latency. Precise manipulation of host and viral factors contribute to preferential maintenance of the viral genome, increased host cell survival, and specific manipulation of the cellular environment including suppression of neighboring cells and immune control. The dynamic control of these processes by the virus regulate inter- and intra-host signals critical to the establishment of chronic infection. Regulation occurs through direct viral protein interactions and cellular signaling, miRNA regulation, and viral mimics of cellular receptors and ligands, all leading to control of cell proliferation, survival, and differentiation. Hematopoietic stem cells have unique biological properties and the tandem control of virus and host make this a unique environment for chronic herpesvirus infection in the bone marrow. This review highlights the elegant complexities of the betaherpesvirus latency and HPC virus-host interactions.


Assuntos
Células-Tronco Hematopoéticas , MicroRNAs , Humanos , Citomegalovirus/genética , MicroRNAs/genética , Diferenciação Celular , Células Cultivadas
18.
Stem Cells Transl Med ; 12(6): 334-354, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37226319

RESUMO

Screening of primary patient acute myeloid leukemia (AML) cells is challenging based on intrinsic characteristics of human AML disease and patient-specific conditions required to sustain AML cells in culture. This is further complicated by inter- and intra-patient heterogeneity, and "contaminating" normal cells devoid of molecular AML mutations. Derivation of induced pluripotent stem cells (iPSCs) from human somatic cells has provided approaches for the development of patient-specific models of disease biology and has recently included AML. Although reprogramming patient-derived cancer cells to pluripotency allows for aspects of disease modeling, the major limitation preventing applications and deeper insights using AML-iPSCs is the rarity of success and limited subtypes of AML disease that can be captured by reprogramming to date. Here, we tested and refined methods including de novo, xenografting, naïve versus prime states and prospective isolation for reprogramming AML cells using a total of 22 AML patient samples representing the wide variety of cytogenetic abnormalities. These efforts allowed us to derive genetically matched healthy control (isogenic) lines and capture clones found originally in patients with AML. Using fluorescently activated cell sorting, we revealed that AML reprogramming is linked to the differentiation state of diseased tissue, where use of myeloid marker CD33 compared to the stem cell marker, CD34, reduces reprogramming capture of AML+ clones. Our efforts provide a platform for further optimization of AML-iPSC generation, and a unique library of iPSC derived from patients with AML for detailed cellular and molecular study.


Assuntos
Células-Tronco Pluripotentes Induzidas , Leucemia Mieloide Aguda , Humanos , Reprogramação Celular/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Diferenciação Celular/genética , Mutação
19.
Microorganisms ; 10(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35336108

RESUMO

Hematopoietic stem/progenitor cells (HSPC) are responsible for the generation of most immune cells throughout the lifespan of the organism. Inflammation can activate bone marrow HSPCs, leading to enhanced myelopoiesis to replace cells, such as neutrophils, which are attracted to inflamed tissues. We have previously shown that HSPC activation promotes parasite persistence and expansion in experimental visceral leishmaniasis through the increased production of permissive monocytes. However, it is not clear if the presence of the parasite in the bone marrow was required for infection-adapted myelopoiesis. We therefore hypothesized that persistent forms of Leishmania major (cutaneous leishmaniasis) could also activate HSPCs and myeloid precursors in the C57Bl/6 mouse model of intradermal infection in the ear. The accrued influx of myeloid cells to the lesion site corresponded to an increase in myeloid-biased HSPCs in the bone marrow and spleen in mice infected with a persistent strain of L. major, together with an increase in monocytes and monocyte-derived myeloid cells in the spleen. Analysis of the bone marrow cytokine and chemokine environment revealed an attenuated type I and type II interferon response in the mice infected with the persistent strain compared to the self-healing strain, while both strains induced a rapid upregulation of myelopoietic cytokines, such as IL-1ß and GM-CSF. These results demonstrate that an active infection in the bone marrow is not necessary for the induction of infection-adapted myelopoiesis, and underline the importance of considering alterations to the bone marrow output when analyzing in vivo host-pathogen interactions.

20.
EJHaem ; 3(3): 669-680, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36051022

RESUMO

The phenotypic changes in hematopoietic stem progenitor cells (HSPCs) with somatic mutations of malignancy-related genes in patients with acquired aplastic anemia (AA) are poorly understood. As our initial study showed increased CXCR4 expression on HLA allele-lacking (HLA[-]) HSPCs that solely support hematopoiesis in comparison to redundant HLA(+) HSPCs in AA patients, we screened the HSPCs of patients with various types of bone marrow (BM) failure to investigate their CXCR4 expression. In comparison to healthy individuals (n = 15, 12.3%-49.9%, median 43.2%), the median CXCR4+ cell percentages in the HSPCs of patients without somatic mutations were low: 29.3% (14.3%-37.3%) in the eight patients without HLA(-) granulocytes, 8.8% (4.1%-9.8%) in the five patients with HLA(-) cells accounting for >90% of granulocytes, and 7.8 (2.1%-8.7%) in the six patients with paroxysmal nocturnal hemoglobinuria. In contrast, the median percentage was much higher (78% [61.4%-88.7%]) in the five AA patients without HLA(-) granulocytes possessing somatic mutations (c-kit, t[8;21], monosomy 7 [one for each], ASXL1 [n = 2]), findings that were comparable to those (66.5%, 63.1%-88.9%) in the four patients with advanced myelodysplastic syndromes. The increased expression of CXCR4 may therefore reflect intrinsic abnormalities of HSPCs caused by somatic mutations that allow them to evade restriction by BM stromal cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA