Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.397
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(21): 3980-3991.e18, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36182704

RESUMO

Simian arteriviruses are endemic in some African primates and can cause fatal hemorrhagic fevers when they cross into primate hosts of new species. We find that CD163 acts as an intracellular receptor for simian hemorrhagic fever virus (SHFV; a simian arterivirus), a rare mode of virus entry that is shared with other hemorrhagic fever-causing viruses (e.g., Ebola and Lassa viruses). Further, SHFV enters and replicates in human monocytes, indicating full functionality of all of the human cellular proteins required for viral replication. Thus, simian arteriviruses in nature may not require major adaptations to the human host. Given that at least three distinct simian arteriviruses have caused fatal infections in captive macaques after host-switching, and that humans are immunologically naive to this family of viruses, development of serology tests for human surveillance should be a priority.


Assuntos
Arterivirus , Febres Hemorrágicas Virais , Animais , Arterivirus/fisiologia , Febres Hemorrágicas Virais/veterinária , Febres Hemorrágicas Virais/virologia , Humanos , Macaca , Primatas , Zoonoses Virais , Internalização do Vírus , Replicação Viral
2.
Cell ; 184(13): 3486-3501.e21, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34077751

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a World Health Organization priority pathogen. CCHFV infections cause a highly lethal hemorrhagic fever for which specific treatments and vaccines are urgently needed. Here, we characterize the human immune response to natural CCHFV infection to identify potent neutralizing monoclonal antibodies (nAbs) targeting the viral glycoprotein. Competition experiments showed that these nAbs bind six distinct antigenic sites in the Gc subunit. These sites were further delineated through mutagenesis and mapped onto a prefusion model of Gc. Pairwise screening identified combinations of non-competing nAbs that afford synergistic neutralization. Further enhancements in neutralization breadth and potency were attained by physically linking variable domains of synergistic nAb pairs through bispecific antibody (bsAb) engineering. Although multiple nAbs protected mice from lethal CCHFV challenge in pre- or post-exposure prophylactic settings, only a single bsAb, DVD-121-801, afforded therapeutic protection. DVD-121-801 is a promising candidate suitable for clinical development as a CCHFV therapeutic.


Assuntos
Anticorpos Neutralizantes/imunologia , Febre Hemorrágica da Crimeia/imunologia , Sobreviventes , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Antígenos Virais/metabolismo , Fenômenos Biofísicos , Chlorocebus aethiops , Mapeamento de Epitopos , Epitopos/metabolismo , Feminino , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Febre Hemorrágica da Crimeia/prevenção & controle , Humanos , Imunoglobulina G/metabolismo , Masculino , Camundongos , Testes de Neutralização , Ligação Proteica , Engenharia de Proteínas , Proteínas Recombinantes/imunologia , Células Vero , Proteínas Virais/química
3.
Immunity ; 49(2): 363-374.e10, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30029854

RESUMO

Ebolaviruses cause severe disease in humans, and identification of monoclonal antibodies (mAbs) that are effective against multiple ebolaviruses are important for therapeutics development. Here we describe a distinct class of broadly neutralizing human mAbs with protective capacity against three ebolaviruses infectious for humans: Ebola (EBOV), Sudan (SUDV), and Bundibugyo (BDBV) viruses. We isolated mAbs from human survivors of ebolavirus disease and identified a potent mAb, EBOV-520, which bound to an epitope in the glycoprotein (GP) base region. EBOV-520 efficiently neutralized EBOV, BDBV, and SUDV and also showed protective capacity in relevant animal models of these infections. EBOV-520 mediated protection principally by direct virus neutralization and exhibited multifunctional properties. This study identified a potent naturally occurring mAb and defined key features of the human antibody response that may contribute to broad protection. This multifunctional mAb and related clones are promising candidates for development as broadly protective pan-ebolavirus therapeutic molecules.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/farmacologia , Ebolavirus/imunologia , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/imunologia , Células 3T3 , Adulto , Animais , Células CHO , Linhagem Celular , Chlorocebus aethiops , Cricetulus , Modelos Animais de Doenças , Drosophila , Feminino , Furões , Cobaias , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/virologia , Humanos , Imunoglobulina G/imunologia , Células Jurkat , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Células THP-1 , Células Vero
4.
Proc Natl Acad Sci U S A ; 120(37): e2304722120, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37669378

RESUMO

Crimean-Congo hemorrhagic fever (CCHF) caused by CCHF virus (CCHFV) is one of the epidemic-prone diseases prioritized by the World Health Organisation as public health emergency with an urgent need for accelerated research. The trajectory of host response against CCHFV is multifarious and remains unknown. Here, we reported the temporal spectrum of pathogenesis following the CCHFV infection using genome-wide blood transcriptomics analysis followed by advanced systems biology analysis, temporal immune-pathogenic alterations, and context-specific progressive and postinfection genome-scale metabolic models (GSMM) on samples collected during the acute (T0), early convalescent (T1), and convalescent-phase (T2). The interplay between the retinoic acid-inducible gene-I-like/nucleotide-binding oligomerization domain-like receptor and tumor necrosis factor signaling governed the trajectory of antiviral immune responses. The rearrangement of intracellular metabolic fluxes toward the amino acid metabolism and metabolic shift toward oxidative phosphorylation and fatty acid oxidation during acute CCHFV infection determine the pathogenicity. The upregulation of the tricarboxylic acid cycle during CCHFV infection, compared to the noninfected healthy control and between the severity groups, indicated an increased energy demand and cellular stress. The upregulation of glycolysis and pyruvate metabolism potentiated energy generation through alternative pathways associated with the severity of the infection. The downregulation of metabolic processes at the convalescent phase identified by blood cell transcriptomics and single-cell type proteomics of five immune cells (CD4+ and CD8+ T cells, CD14+ monocytes, B cells, and NK cells) potentially leads to metabolic rewiring through the recovery due to hyperactivity during the acute phase leading to post-viral fatigue syndrome.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Humanos , Linfócitos T CD8-Positivos , Regulação para Cima , Metaboloma
5.
J Virol ; 98(7): e0078624, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38916398

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) virus and hantavirus are categorized under the Bunyavirales order. The severe disease progression in both SFTS and hemorrhagic fever with renal syndrome (HFRS) is associated with cytokine storms. This study aimed to explore the differences in cytokine profiles and immune responses between the two diseases. A cross-sectional, single-center study involved 100 participants, comprising 46 SFTS patients, 48 HFRS patients, and 6 healthy controls. The study employed the Luminex cytokine detection platform to measure 48 cytokines. The differences in cytokine profiles and immune characteristics between the two diseases were further analyzed using multiple linear regression, principal component analysis, and random forest method. Among the 48 cytokines tested, 30 showed elevated levels in SFTS and/or HFRS compared to the healthy control group. Furthermore, there were 19 cytokines that exhibited significant differences between SFTS and HFRS. Random forest analysis suggested that TRAIL and CTACK were predictive of SFTS, while IL2Ralpha, MIG, IL-8, IFNalpha2, HGF, SCF, MCP-3, and PDGFBB were more common with HFRS. It was further verified by the receiver operating characteristic with area under the curve >0.8 and P-values <0.05, except for TRAIL. Significant differences were observed in the cytokine profiles of SFTS and HFRS, with TRAIL, IL2Ralpha, MIG, and IL-8 being the top 4 cytokines that most clearly distinguished the two diseases. IMPORTANCE: SFTS and HFRS differ in terms of cytokine immune characteristics. TRAIL, IL-2Ralpha, MIG, and IL-8 were the top 4 that differed markedly between SFTS and HFRS.


Assuntos
Citocinas , Febre Hemorrágica com Síndrome Renal , Febre Grave com Síndrome de Trombocitopenia , Humanos , Febre Hemorrágica com Síndrome Renal/imunologia , Febre Hemorrágica com Síndrome Renal/virologia , Febre Hemorrágica com Síndrome Renal/sangue , Citocinas/sangue , Masculino , Febre Grave com Síndrome de Trombocitopenia/imunologia , Febre Grave com Síndrome de Trombocitopenia/virologia , Pessoa de Meia-Idade , Feminino , Estudos Transversais , Adulto , Idoso , Phlebovirus/imunologia
6.
J Virol ; 98(7): e0062224, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38953377

RESUMO

African swine fever virus causes a lethal hemorrhagic disease in domestic swine and wild boar for which currently licensed commercial vaccines are only available in Vietnam. Development of subunit vaccines is complicated by the lack of information on protective antigens as well as suitable delivery systems. Our previous work showed that a pool of eight African swine fever virus genes vectored using an adenovirus prime and modified vaccinia virus boost could prevent fatal disease after challenge with a virulent genotype I isolate of the virus. Here, we identify antigens within this pool of eight that are essential for the observed protection and demonstrate that adenovirus-prime followed by adenovirus-boost can also induce protective immune responses against genotype I African swine fever virus. Immunization with a pool of adenoviruses expressing individual African swine fever virus genes partially tailored to genotype II virus did not protect against challenge with genotype II Georgia 2007/1 strain, suggesting that different antigens may be required to induce cross-protection for genetically distinct viruses. IMPORTANCE: African swine fever virus causes a lethal hemorrhagic disease in domestic pigs and has killed millions of animals across Europe and Asia since 2007. Development of safe and effective subunit vaccines against African swine fever has been problematic due to the complexity of the virus and a poor understanding of protective immunity. In a previous study, we demonstrated that a complex combination of eight different virus genes delivered using two different viral vector vaccine platforms protected domestic pigs from fatal disease. In this study, we show that three of the eight genes are required for protection and that one viral vector is sufficient, significantly reducing the complexity of the vaccine. Unfortunately, this combination did not protect against the current outbreak strain of African swine fever virus, suggesting that more work to identify immunogenic and protective viral proteins is required to develop a truly effective African swine fever vaccine.


Assuntos
Adenoviridae , Vírus da Febre Suína Africana , Febre Suína Africana , Vetores Genéticos , Genótipo , Vacinas Virais , Animais , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/prevenção & controle , Febre Suína Africana/virologia , Febre Suína Africana/imunologia , Suínos , Vacinas Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/administração & dosagem , Vetores Genéticos/genética , Adenoviridae/genética , Adenoviridae/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/genética , Antígenos Virais/imunologia , Antígenos Virais/genética
7.
J Virol ; 98(3): e0169823, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38358288

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV), a tick-borne virus of the Orthonairovirus genus, persistently infects tick cells. It has been reported to establish persistent infection in non-human primates, but virological analysis has not yet been performed in human cells. Here, we investigated whether and how nairoviruses persistently infect human cells using Hazara orthonairovirus (HAZV), a surrogate model for CCHFV. We established a human cell line that was persistently infected with HAZV. Surprisingly, virions of persistently infected HAZV (HAZVpi) were not observed in the culture supernatants. There were five mutations (mut1, mut2, mut3, mut4, and mut5) in L protein of HAZVpi. Mutations in L protein of HAZVpi contribute to non-detection of virion in the supernatants. Lmut4 was found to cause low viral growth rate, despite its high polymerase activity. The low growth rate was restored by Lmut2, Lmut3, and Lmut5. The polymerase activity of Lmut1 was extremely low, and recombinant HAZV carrying Lmut1 (rHAZV/Lmut1) was not released into the supernatants. However, genomes of rHAZV/Lmut1 were retained in the infected cells. All mutations (Lmut1-5) found in L protein of HAZVpi were required for experimental reproduction of HAZVpi, and only Lmut1 and Lmut4 were insufficient. We demonstrated that point mutations in viral polymerase contribute to the establishment of persistent HAZV infection. Furthermore, innate immunity was found to be suppressed in HAZVpi-infected cells, which also potentially contributes to viral persistence. This is the first presentation of a possible mechanism behind how nairoviruses establish persistent infection in human cells. IMPORTANCE: We investigated whether and how nairoviruses persistently infect human cells, using Hazara orthonairovirus (HAZV), a surrogate model for Crimean-Congo hemorrhagic fever virus. We established a human cell line that was persistently infected with HAZV. Five mutations were found in L protein of persistently infected HAZV (HAZVpi): mut1, mut2, mut3, mut4, and mut5. Among them, Lmut1 and Lmut4 restricted viral growth by low polymerase activity and low growth rate, respectively, leading to inhibition of viral overgrowth. The restriction of viral growth caused by Lmut1 and Lmut4 was compensated by other mutations, including Lmut2, Lmut3, and Lmut5. Each of the mutations found in L protein of HAZVpi was concluded to cooperatively modulate viral growth, which facilitates the establishment of persistent infection. Suppression of innate immunity also potentially contributes to virus persistence. This is the first presentation of a possible mechanism behind how nairoviruses establish persistent infection in human cells.


Assuntos
Infecções por Bunyaviridae , Nairovirus , RNA Polimerase Dependente de RNA , Animais , Humanos , Infecções por Bunyaviridae/virologia , Linhagem Celular , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Febre Hemorrágica da Crimeia/virologia , Mutação , Nairovirus/genética , Infecção Persistente , RNA Polimerase Dependente de RNA/genética
8.
J Virol ; 98(6): e0057824, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38767352

RESUMO

The mammarenavirus Lassa virus (LASV) causes the life-threatening hemorrhagic fever disease, Lassa fever. The lack of licensed medical countermeasures against LASV underscores the urgent need for the development of novel LASV vaccines, which has been hampered by the requirement for a biosafety level 4 facility to handle live LASV. Here, we investigated the efficacy of mRNA-lipid nanoparticle (mRNA-LNP)-based vaccines expressing the LASV glycoprotein precursor (LASgpc) or nucleoprotein (LCMnp) of the prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV), in mice. Two doses of LASgpc- or LCMnp-mRNA-LNP administered intravenously (i.v.) protected C57BL/6 mice from a lethal challenge with a recombinant (r) LCMV expressing a modified LASgpc (rLCMV/LASgpc2m) inoculated intracranially. Intramuscular (i.m.) immunization with two doses of LASgpc- or LCMnp-mRNA-LNP significantly reduced the viral load in C57BL/6 mice inoculated i.v. with rLCMV/LASgpc2m. High levels of viremia and lethality were observed in CBA mice inoculated i.v. with rLCMV/LASgpc2m, which were abrogated by i.m. immunization with two doses of LASgpc-mRNA-LNP. The protective efficacy of two i.m. doses of LCMnp-mRNA-LNP was confirmed in a lethal hemorrhagic disease model of FVB mice i.v. inoculated with wild-type rLCMV. In all conditions tested, negligible and high levels of LASgpc- and LCMnp-specific antibodies were detected in mRNA-LNP-immunized mice, respectively, but robust LASgpc- and LCMnp-specific CD8+ T cell responses were induced. Accordingly, plasma from LASgpc-mRNA-LNP-immunized mice did not exhibit neutralizing activity. Our findings and surrogate mouse models of LASV infection, which can be studied at a reduced biocontainment level, provide a critical foundation for the rapid development of mRNA-LNP-based LASV vaccines.IMPORTANCELassa virus (LASV) is a highly pathogenic mammarenavirus responsible for several hundred thousand infections annually in West African countries, causing a high number of lethal Lassa fever (LF) cases. Despite its significant impact on human health, clinically approved, safe, and effective medical countermeasures against LF are not available. The requirement of a biosafety level 4 facility to handle live LASV has been one of the main obstacles to the research and development of LASV countermeasures. Here, we report that two doses of mRNA-lipid nanoparticle-based vaccines expressing the LASV glycoprotein precursor (LASgpc) or nucleoprotein (LCMnp) of lymphocytic choriomeningitis virus (LCMV), a mammarenavirus genetically closely related to LASV, conferred protection to recombinant LCMV-based surrogate mouse models of lethal LASV infection. Notably, robust LASgpc- and LCMnp-specific CD8+ T cell responses were detected in mRNA-LNP-immunized mice, whereas no virus-neutralizing activity was observed.


Assuntos
Febre Lassa , Vírus Lassa , Vírus da Coriomeningite Linfocítica , Nanopartículas , Vacinas Virais , Animais , Feminino , Camundongos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Glicoproteínas/imunologia , Glicoproteínas/genética , Febre Lassa/prevenção & controle , Febre Lassa/imunologia , Vírus Lassa/imunologia , Vírus Lassa/genética , Lipossomos , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/genética , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Nucleoproteínas/imunologia , Nucleoproteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Carga Viral , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
9.
Emerg Infect Dis ; 30(5): 864-873, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38666553

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is the most geographically widespread tickborne viral infection worldwide and has a fatality rate of up to 62%. Despite its widespread range and high fatality rate, no vaccines or treatments are currently approved by regulatory agencies in the United States or Europe. Supportive treatment remains the standard of care, but the use of antiviral medications developed for other viral infections have been considered. We reviewed published literature to summarize the main aspects of CCHFV infection in humans. We provide an overview of diagnostic testing and management and medical countermeasures, including investigational vaccines and limited therapeutics. CCHFV continues to pose a public health threat because of its wide geographic distribution, potential to spread to new regions, propensity for genetic variability, potential for severe and fatal illness, and limited medical countermeasures for prophylaxis and treatment. Clinicians should become familiar with available diagnostic and management tools for CCHFV infections in humans.


Assuntos
Antivirais , Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Febre Hemorrágica da Crimeia/diagnóstico , Febre Hemorrágica da Crimeia/terapia , Febre Hemorrágica da Crimeia/tratamento farmacológico , Humanos , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Antivirais/uso terapêutico , Animais , Gerenciamento Clínico , Vacinas Virais
10.
Emerg Infect Dis ; 30(5): 854-863, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38666548

RESUMO

Crimean-Congo hemorrhagic fever (CCHF) is a tickborne infection that can range from asymptomatic to fatal and has been described in >30 countries. Early identification and isolation of patients with suspected or confirmed CCHF and the use of appropriate prevention and control measures are essential for preventing human-to-human transmission. Here, we provide an overview of the epidemiology, clinical features, and prevention and control of CCHF. CCHF poses a continued public health threat given its wide geographic distribution, potential to spread to new regions, propensity for genetic variability, and potential for severe and fatal illness, in addition to the limited medical countermeasures for prophylaxis and treatment. A high index of suspicion, comprehensive travel and epidemiologic history, and clinical evaluation are essential for prompt diagnosis. Infection control measures can be effective in reducing the risk for transmission but require correct and consistent application.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Febre Hemorrágica da Crimeia/epidemiologia , Febre Hemorrágica da Crimeia/prevenção & controle , Febre Hemorrágica da Crimeia/transmissão , Febre Hemorrágica da Crimeia/diagnóstico , Febre Hemorrágica da Crimeia/virologia , Humanos , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Animais , Carrapatos/virologia
11.
Emerg Infect Dis ; 30(5): 847-853, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38666566

RESUMO

Crimean-Congo hemorrhagic fever (CCHF), caused by CCHF virus, is a tickborne disease that can cause a range of illness outcomes, from asymptomatic infection to fatal viral hemorrhagic fever; the disease has been described in >30 countries. We conducted a literature review to provide an overview of the virology, pathogenesis, and pathology of CCHF for clinicians. The virus life cycle and molecular interactions are complex and not fully described. Although pathogenesis and immunobiology are not yet fully understood, it is clear that multiple processes contribute to viral entry, replication, and pathological damage. Limited autopsy reports describe multiorgan involvement with extravasation and hemorrhages. Advanced understanding of CCHF virus pathogenesis and immunology will improve patient care and accelerate the development of medical countermeasures for CCHF.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Vírus da Febre Hemorrágica da Crimeia-Congo/patogenicidade , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Febre Hemorrágica da Crimeia/virologia , Febre Hemorrágica da Crimeia/patologia , Humanos , Animais , Carrapatos/virologia , Replicação Viral
12.
Emerg Infect Dis ; 30(4): 836-838, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526202

RESUMO

We conducted a cross-sectional study of Crimean-Congo hemorrhagic fever virus (CCHFV) in northern Tanzania. CCHFV seroprevalence in humans and ruminant livestock was high, as were spatial heterogeneity levels. CCHFV could represent an unrecognized human health risk in this region and should be included as a differential diagnosis for febrile illness.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Humanos , Animais , Gado , Estudos Transversais , Estudos Soroepidemiológicos , Tanzânia/epidemiologia
14.
Emerg Infect Dis ; 30(4): 654-664, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526059

RESUMO

Sporadic cases and outbreaks of Crimean-Congo hemorrhagic fever (CCHF) have been documented across Pakistan since 1976; however, data regarding the diversity of CCHF virus (CCHFV) in Pakistan is sparse. We whole-genome sequenced 36 CCHFV samples collected from persons infected in Pakistan during 2017-2020. Most CCHF cases were from Rawalpindi (n = 10), followed by Peshawar (n = 7) and Islamabad (n = 4). Phylogenetic analysis revealed the Asia-1 genotype was dominant, but 4 reassorted strains were identified. Strains with reassorted medium gene segments clustered with Asia-2 (n = 2) and Africa-2 (n = 1) genotypes; small segment reassortments clustered with the Asia-2 genotype (n = 2). Reassorted viruses showed close identity with isolates from India, Iran, and Tajikistan, suggesting potential crossborder movement of CCHFV. Improved and continuous human, tick, and animal surveillance is needed to define the diversity of circulating CCHFV strains in Pakistan and prevent transmission.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Animais , Humanos , Febre Hemorrágica da Crimeia/epidemiologia , Filogenia , Paquistão/epidemiologia , Análise de Sequência de DNA
15.
Emerg Infect Dis ; 30(4): 805-807, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526304

RESUMO

We report an imported Crimean-Congo hemorrhagic fever case in Senegal. The patient received PCR confirmation of virus infection 10 days after symptom onset. We identified 46 patient contacts in Senegal; 87.7% were healthcare professionals. Strengthening border crossing and community surveillance systems can help reduce the risks of infectious disease transmission.


Assuntos
Febre Hemorrágica da Crimeia , Humanos , Febre Hemorrágica da Crimeia/diagnóstico , Febre Hemorrágica da Crimeia/terapia , Administração de Caso , Senegal/epidemiologia , Emigração e Imigração , Pessoal de Saúde
16.
Emerg Infect Dis ; 30(7): 1319-1325, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38916548

RESUMO

Crimean-Congo hemorrhagic fever (CCHF) is a lethal viral disease that has severe public health effects throughout Africa and a case fatality rate of 10%-40%. CCHF virus was first discovered in Crimea in 1944 and has since caused a substantial disease burden in Africa. The shortage of diagnostic tools, ineffective tick control efforts, slow adoption of preventive measures, and cultural hurdles to public education are among the problems associated with continued CCHF virus transmission. Progress in preventing virus spread is also hampered by the dearth of effective serodiagnostic testing for animals and absence of precise surveillance protocols. Intergovernmental coordination, creation of regional reference laboratories, multiinstitutional public education partnerships, investments in healthcare infrastructure, vaccine development, and a One Health approach are strategic methods for solving prevention challenges. Coordinated efforts and financial commitments are needed to combat Crimean-Congo hemorrhagic fever and improve all-around readiness for newly developing infectious illnesses in Africa.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Febre Hemorrágica da Crimeia/epidemiologia , Febre Hemorrágica da Crimeia/diagnóstico , Febre Hemorrágica da Crimeia/transmissão , Humanos , África/epidemiologia , Vírus da Febre Hemorrágica da Crimeia-Congo/isolamento & purificação , Animais , Carrapatos/virologia
17.
Emerg Infect Dis ; 30(5): 984-990, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38666621

RESUMO

We conducted a cross-sectional study in wild boar and extensively managed Iberian pig populations in a hotspot area of Crimean-Congo hemorrhagic fever virus (CCHFV) in Spain. We tested for antibodies against CCHFV by using 2 ELISAs in parallel. We assessed the presence of CCHFV RNA by means of reverse transcription quantitative PCR protocol, which detects all genotypes. A total of 113 (21.8%) of 518 suids sampled showed antibodies against CCHFV by ELISA. By species, 106 (39.7%) of 267 wild boars and 7 (2.8%) of 251 Iberian pigs analyzed were seropositive. Of the 231 Iberian pigs and 231 wild boars analyzed, none tested positive for CCHFV RNA. These findings indicate high CCHFV exposure in wild boar populations in endemic areas and confirm the susceptibility of extensively reared pigs to CCHFV, even though they may only play a limited role in the enzootic cycle.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Doenças dos Suínos , Animais , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/isolamento & purificação , Espanha/epidemiologia , Febre Hemorrágica da Crimeia/epidemiologia , Febre Hemorrágica da Crimeia/veterinária , Febre Hemorrágica da Crimeia/virologia , Suínos , Estudos Transversais , Doenças dos Suínos/virologia , Doenças dos Suínos/epidemiologia , Anticorpos Antivirais/sangue , Estudos Soroepidemiológicos , Sus scrofa/virologia , RNA Viral
19.
Emerg Infect Dis ; 30(4): 672-680, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526057

RESUMO

To estimate the determinants of spatial variation in Crimean-Congo hemorrhagic fever virus (CCHFV) transmission and to create a risk map as a preventive public health tool, we designed a survey of small domestic ruminants in Andalusia, Spain. To assess CCHFV exposure spatial distribution, we analyzed serum from 2,440 sheep and goats by using a double-antigen ELISA and modeled exposure probability with environmental predictors by using generalized linear mixed models. CCHFV antibodies detected in 84 samples confirmed low CCHFV prevalence in small domestic ruminants in the region. The best-fitted statistical model indicated that the most significant predictors of virus exposure risk were cattle/horse density and the normalized difference vegetation index. Model validation showed 99.7% specificity and 10.2% sensitivity for identifying CCHFV circulation areas. To map CCHFV exposure risk, we projected the model at a 1 × 1-km spatial resolution. Our study provides insight into CCHFV ecology that is useful for preventing virus transmission.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Animais , Bovinos , Ovinos , Cavalos , Febre Hemorrágica da Crimeia/epidemiologia , Febre Hemorrágica da Crimeia/veterinária , Ruminantes , Espanha/epidemiologia , Cabras
20.
Emerg Infect Dis ; 30(4): 721-731, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526136

RESUMO

Genetically diverse simian arteriviruses (simarteriviruses) naturally infect geographically and phylogenetically diverse monkeys, and cross-species transmission and emergence are of considerable concern. Characterization of most simarteriviruses beyond sequence analysis has not been possible because the viruses fail to propagate in the laboratory. We attempted to isolate 4 simarteriviruses, Kibale red colobus virus 1, Pebjah virus, simian hemorrhagic fever virus, and Southwest baboon virus 1, by inoculating an immortalized grivet cell line (known to replicate simian hemorrhagic fever virus), primary macaque cells, macrophages derived from macaque induced pluripotent stem cells, and mice engrafted with macaque CD34+-enriched hematopoietic stem cells. The combined effort resulted in successful virus isolation; however, no single approach was successful for all 4 simarteriviruses. We describe several approaches that might be used to isolate additional simarteriviruses for phenotypic characterization. Our results will expedite laboratory studies of simarteriviruses to elucidate virus-host interactions, assess zoonotic risk, and develop medical countermeasures.


Assuntos
Arterivirus , Animais , Camundongos , Arterivirus/genética , Macaca , Macrófagos , Linhagem Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA