Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Inherit Metab Dis ; 47(4): 664-673, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38487984

RESUMO

Altered activity of specific enzymes in phenylalanine-tyrosine (phe-tyr) metabolism results in incomplete breakdown of various metabolite substrates in this pathway. Increased biofluid concentration and tissue accumulation of the phe-tyr pathway metabolite homogentisic acid (HGA) is central to pathophysiology in the inherited disorder alkaptonuria (AKU). Accumulation of metabolites upstream of HGA, including tyrosine, occurs in patients on nitisinone, a licenced drug for AKU and hereditary tyrosinaemia type 1, which inhibits the enzyme responsible for HGA production. The aim of this study was to investigate the phe-tyr metabolite content of key biofluids and tissues in AKU mice on and off nitisinone to gain new insights into the biodistribution of metabolites in these altered metabolic states. The data show for the first time that HGA is present in bile in AKU (mean [±SD] = 1003[±410] µmol/L; nitisinone-treated AKU mean [±SD] = 45[±23] µmol/L). Biliary tyrosine, 3(4-hydroxyphenyl)pyruvic acid (HPPA) and 3(4-hydroxyphenyl)lactic acid (HPLA) are also increased on nitisinone. Urine was confirmed as the dominant elimination route of HGA in untreated AKU, but with indication of biliary excretion. These data provide new insights into pathways of phe-tyr metabolite biodistribution and metabolism, showing for the first time that hepatobiliary excretion contributes to the total pool of metabolites in this pathway. Our data suggest that biliary elimination of organic acids and other metabolites may play an underappreciated role in disorders of metabolism. We propose that our finding of approximately 3.8 times greater urinary HGA excretion in AKU mice compared with patients is one reason for the lack of extensive tissue ochronosis in the AKU mouse model.


Assuntos
Alcaptonúria , Cicloexanonas , Modelos Animais de Doenças , Ácido Homogentísico , Nitrobenzoatos , Alcaptonúria/urina , Alcaptonúria/metabolismo , Animais , Ácido Homogentísico/urina , Ácido Homogentísico/metabolismo , Camundongos , Cicloexanonas/urina , Masculino , Tirosina/metabolismo , Tirosina/urina , Fígado/metabolismo , Fenilalanina/metabolismo
2.
J Biomol Struct Dyn ; 41(20): 10507-10524, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36510663

RESUMO

The liver is the major organ responsible for metabolism of amyloid-beta, the primary toxic misfolded protein responsible for Alzheimer's disease (AD). The present study focuses on the crucial role of liver in AD. We have developed a framework that formulates and integrates two reciprocal transport processes of amyloid, via hepato-biliary and enterohepatic circulations (EHC). Our system analysis approach shows that activating the liver X-receptor (LXR) can reduce amyloid-beta formation by increasing expression of the genes: ATP-binding-cassette-transporter (ABCA1) and Stearoyl-CoA-desaturase (SCD). Besides, activating the pregnane-X-receptor (PXR) can enhance the clearance of amyloid-beta by increasing the expression of the genes: ATP-Binding-Cassette-Superfamily-G-member-2 (ABCG2) and multidrug-resistance protein-1 (MDR1). We also identified receptor-like apical sodium-dependent bile-acid transporter (ASBT) of intestinal enterocyte, showing affinity towards amyloid-beta, suggesting amyloid-beta's possible reuptake from intestinal contents to the systemic circulation through this receptor. Further, we have performed protein-protein interaction to evaluate the binding affinity of amyloid-beta to these receptors. Moreover, we undertook molecular docking and molecular dynamic simulation of some repurposed drugs (rifampicin, 24-hydroxycholesterols, resveratrol, cilostazol) which can target the aforesaid receptors to enhance amyloid-beta's fecal clearance, reduce amyloid-beta formation, and prevent the reuptake of amyloid-beta from intestinal feces. Additionally, network pharmacology and synergism analysis were utilized to validate our hypothesis and identify the drug combinations, respectively. Gene-ontology investigation, network pharmacology, and consolidated pathway analysis validate the alteration of the above-mentioned gene expression profiles. Furthermore, our neuropharmacological synergism study identifies the optimal combination of the repurposed drugs. Finally, our findings on candidate drugs are substantiated by clinical-trial outcomes.Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Simulação de Acoplamento Molecular , Biologia de Sistemas , Peptídeos beta-Amiloides/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Trifosfato de Adenosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA