Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Int J Clin Oncol ; 28(8): 941-955, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37300720

RESUMO

The development of novel antitumor agents and accompanying biomarkers has improved survival across several tumor types. Previously, we developed recommendations for tumor-agnostic treatments in patients with solid tumors with DNA mismatch repair deficient or neurotrophic receptor tyrosine kinase fusions. Recently, immune checkpoint inhibitors have shown efficacy in patient with tumor mutation burden-high (TMB-H) solid tumors and have been established as a third tumor-agnostic agent, making it necessary to develop the guideline prioritized for these patients. Clinical questions regarding medical care were formulated for patients with TMB-H advanced solid tumors. Relevant publications were searched by PubMed and Cochrane Database. Critical publications and conference reports were added manually. Systematic reviews were performed for each clinical question for the purpose of developing clinical recommendations. The committee members identified by Japan Society of Clinical Oncology (JSCO), Japanese Society of Medical Oncology (JSMO), and Japanese society of pediatric hematology/oncology (JSPHO) voted to determine the level of each recommendation considering the strength of evidence, expected risks and benefits to patients, and other related factors. Thereafter, a peer review by experts nominated from JSCO, JSMO, and JSPHO, and the public comments among all societies' members was done. The current guideline describes three clinical questions and seven recommendations for whom, when, and how TMB should be tested, and what is recommended for patients with TMB-H advanced solid tumors. In this guideline, the committee proposed seven recommendations for performing TMB testing properly to select patients who are likely to benefit from immunotherapy.


Assuntos
Neoplasias Encefálicas , Hematologia , Criança , Humanos , Antígeno B7-H1 , Biomarcadores Tumorais/genética , População do Leste Asiático , Imunoterapia , Japão , Oncologia , Mutação
2.
Front Oncol ; 14: 1357233, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529379

RESUMO

This case report details a patient with Pancreatic Acinar Cell Carcinoma (PACC), a rare malignancy with distinctive biological and imaging features. In the absence of standardized treatment protocols for PACC, we embarked on a diagnostic journey that led to the adoption of an innovative therapeutic regimen in our institution. A 45-year-old female patient presented with a pancreatic mass, which was histologically confirmed as PACC following a biopsy. Subsequent genomic profiling revealed a high tumor mutational burden (21.4/Mb), prompting the initiation of combined immunotherapy and targeted therapy. Notably, the patient experienced a unique adverse reaction to the immunotherapy-recurrent subcutaneous soft tissue nodules, particularly in the gluteal and lower limb regions, accompanied by pain, yet resolving spontaneously. Following six cycles of the dual therapy, radiological evaluations indicated a decrease in tumor size, leading to a successful surgical excision. Over a 20-month post-surgical follow-up, the patient showed no signs of disease recurrence. This narrative adds to the existing knowledge on PACC and highlights the potential efficacy of immunotherapy in managing this challenging condition, emphasizing the importance of close monitoring for any adverse reactions.

3.
Front Oncol ; 14: 1405170, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011472

RESUMO

Background: Metastatic colon adenocarcinoma presents significant challenges in treatment, particularly when resistant to standard therapies. Precision oncology, guided by multidisciplinary tumor boards (MTBs), offers a promising way for individualized therapeutic approaches. Integration of comprehensive genomic profiling (CGP) and minimal residual disease (MRD) testing strengthens treatment decision-making, yet challenges persist in identifying and overcoming resistance mechanisms. FLT3 amplification can be one of those resistance/escape mechanisms that needs to be targeted. Case presentation: This case report presents a 58-year-old male diagnosed with metastatic colon adenocarcinoma with liver metastasis, resistant to conventional treatments. Utilizing CGP and MRD testing, our multidisciplinary MTB identified a complex mutational profile, including APC, DAXX, TP53 mutations, and CDK8 and FLT3 amplifications. With a tumor mutational burden of 10 muts/mb and TPS, CPS scores of 0, immunotherapy was considered, employing dual immune checkpoint inhibitors alongside mebendazole and Lenvatinib targeting the WNT and VEGF/angiogenesis pathways. MRD testing revealed early treatment failure. Re-evaluation identified high copied FLT3 amplification (62 copies) as a resistance mechanism, prompting modification to incorporate sorafenib and dual immunotherapy with mebendazole. Subsequent MRD assessments and radiological scans demonstrated a remarkable therapeutic response, with sustained efficacy and absence of detectable residual disease. Conclusion: This case highlights the successful application of precision oncology principles, facilitated by dynamic MTB-guided treatment strategies. Integration of MRD testing provided early detection of treatment inefficacy, allowing for timely intervention and adaptation of the treatment plan. Additionally, the case highlights the educational value of rare molecular alterations, emphasizing continual learning and refinement of treatment approaches in precision oncology.

4.
Cancers (Basel) ; 16(14)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39061168

RESUMO

The regulatory approvals of tumor-agnostic therapies have led to the re-evaluation of the drug development process. The conventional models of drug development are histology-based. On the other hand, the tumor-agnostic drug development of a new drug (or combination) focuses on targeting a common genomic biomarker in multiple cancers, regardless of histology. The basket-like clinical trials with multiple cohorts allow clinicians to evaluate pan-cancer efficacy and toxicity. There are currently eight tumor agnostic approvals granted by the Food and Drug Administration (FDA). This includes two immune checkpoint inhibitors, and five targeted therapy agents. Pembrolizumab is an anti-programmed cell death protein-1 (PD-1) antibody that was the first FDA-approved tumor-agnostic treatment for unresectable or metastatic microsatellite instability-high (MSI-H) or deficient mismatch repair (dMMR) solid tumors in 2017. It was later approved for tumor mutational burden-high (TMB-H) solid tumors, although the TMB cut-off used is still debated. Subsequently, in 2021, another anti-PD-1 antibody, dostarlimab, was also approved for dMMR solid tumors in the refractory setting. Patients with fusion-positive cancers are typically difficult to treat due to their rare prevalence and distribution. Gene rearrangements or fusions are present in a variety of tumors. Neurotrophic tyrosine kinase (NTRK) fusions are present in a range of pediatric and adult solid tumors in varying frequency. Larotrectinib and entrectinib were approved for neurotrophic tyrosine kinase (NTRK) fusion-positive cancers. Similarly, selpercatinib was approved for rearranged during transfection (RET) fusion-positive solid tumors. The FDA approved the first combination therapy of dabrafenib, a B-Raf proto-oncogene serine/threonine kinase (BRAF) inhibitor, plus trametinib, a mitogen-activated protein kinase (MEK) inhibitor for patients 6 months or older with unresectable or metastatic tumors (except colorectal cancer) carrying a BRAFV600E mutation. The most recent FDA tumor-agnostic approval is of fam-trastuzumab deruxtecan-nxki (T-Dxd) for HER2-positive solid tumors. It is important to identify and expeditiously develop drugs that have the potential to provide clinical benefit across tumor types.

5.
J Immunother Cancer ; 6(1): 157, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30587233

RESUMO

Tumors responding to immune checkpoint inhibitors (ICIs) have a higher level of immune infiltrates and/or an Interferon (IFN) signature indicative of a T-cell-inflamed phenotype. Melanoma and lung cancer demonstrate high response rates to ICIs and are commonly referred to as "hot tumors". These are in sharp contrast to tumors with low immune infiltrates called "cold tumors" or non-T-cell-inflamed cancers, such as those from the prostate and pancreas. Classification of tumors based on their immune phenotype can partially explain clinical response to ICIs. However, this model alone cannot fully explain the lack of response among many patients treated with ICIs.Dichotomizing tumors based on their mutation profile into high tumor mutation burden (TMB) or low TMB, such as many childhood malignancies, can also, to some extent, explain the clinical response to immunotherapy. This model mainly focuses on a tumor's genotype rather than its immune phenotype. High TMB tumors often have higher levels of neoantigens that can be recognized by the immune system. In the current era of immunotherapy, with the lack of definitive biomarkers, we need to evaluate tumors based on both their immune phenotype and genomic mutation profile to determine which patients have a higher likelihood of responding to treatment with ICIs.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Neoplasias , Biomarcadores , Genótipo , Humanos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/imunologia , Fenótipo , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA