RESUMO
Phenanthraquinone-doped polymethyl methacrylate (PQ/PMMA) photopolymers are considered to be the most promising holographic storage media due to their unique properties, such as high stability, a simple preparation process, low price, and volumetric shrinkage. This paper reviews the development process of PQ/PMMA photopolymers from inception to the present, summarizes the process, and looks at the development potential of PQ/PMMA in practical applications.
Assuntos
Holografia , Polimetil MetacrilatoRESUMO
The polarization state of light waves significantly affects the quality of holographic recordings. This paper quantitatively analyzes the impact of different polarization states of signal and reference beams on the quality of holographic recordings in PQ/PMMA photopolymer systems during the holography process. By deriving the light field distribution of the interference between two light waves of different polarization states and introducing the interference fringe contrast and the modulation of the refractive index of the photopolymer, we established the relationship between the diffraction efficiency of PQ/PMMA photopolymer holographic gratings and the angle between polarization directions. Based on this relationship, simulations and experiments were conducted. The experimental results demonstrated that as the angle between the polarization directions increased, the diffraction efficiency of the material decreased, with the efficiency dropping to 24.69% of its original value when the angle increased from 0° to 50°. When the angle increased to 60°, the influence of polarization characteristics became gradually significant, and at 90°, it was entirely dominated by polarization characteristics. The photoinduced birefringence properties of the PQ/PMMA prepared in the measurement experiment were studied, and the polarization characteristics of the reconstructed light under polarization direction angles of 0°, 60°, and 90° were investigated. The results indicated that at a polarization direction angle of 60 degrees, the material exhibited a significant response to the polarization information of the signal light. Finally, holographic recordings of objects at different polarization direction angles were conducted, and the reconstructed images were used to visually reflect the impact of the polarization direction angle on the quality of holographic recordings.
RESUMO
The role of volume hydrogel holographic gratings as optical transducers in sensor devices for point-of-care applications is increasing due to their ability to be functionalized for achieving enhanced selectivity. The first step in the development of these transducers is the optimization of the holographic recording process. The optimization aims at achieving gratings with reproducible diffraction efficiency, which remains stable after reiterative washings, typically required when working with analytes of a biological nature or several step tests. The recording process of volume phase transmission gratings within Acrylamide/Propargyl Acrylate hydrogel layers reported in this work was successfully performed, and the obtained diffraction gratings were optically characterized. Unslanted volume transmission gratings were recorded in the hydrogel layers diffraction efficiencies; up to 80% were achieved. Additionally, the recorded gratings demonstrated stability in water after multiple washing steps. The hydrogels, after functionalization with oligonucleotide probes, yields a specific hybridization response, recognizing the complementary strand as demonstrated by fluorescence. Analyte-sensitive hydrogel layers with holographic structures are a promising candidate for the next generation of in vitro diagnostic tests.
RESUMO
Photopolymers hold great promise for the preparation of transparent volume holographic gratings (VHG), which are core optical elements in many application fields. To improve the holographic recording property of a two-stage photopolymer, four new (meth)acrylate monomers (CTA, CTMA, CTBA, CTBMA) with high refractive indices (1.59-1.63) are designed and synthesized in this study. Using them as one writing monomer, a series of photopolymer samples with different formulations and thicknesses are fabricated for holographic recording. Among them, a formulation containing 9 wt % CTMA shows the best performance. Using it as a recording medium, a VHG with high resolution and diffraction efficiency is constructed. Its refractive index modulation reaches 0.046. Moreover, its total transmittance within 400-800 nm achieves 96.62% after photobleaching. The results indicate that the CTMA-based formulation has great application potential in developing high-performance transparent VHG.
RESUMO
Among light-responsive materials for photonics, azo polymers occupy an important position due to their optical response and the related concepts of consecutive applications. However, scientific insight is still needed to understand the effects of irradiation on the modification of the azo polymer structure and the effect of this modification on incoming probing light. In this work, we report on a surface relief grating with a maximum depth of a record-high value of 1.7 µm, inscribed holographically in a custom synthesized glassy azo polymer belonging to the poly(ether imide) family. We show that the specifically deformed polymer, forming an amplitude-modulated relief grating, has a unique dual effect on an incoming light beam of different diameters. When illuminated by a narrow probe beam, the structure acts as a variable-depth grating, enabling a continuous tuning of the diffraction efficiencies in the entire theoretically predicted range and, thus, generating or eliminating diffracted waves of specified order. Alternatively, when illuminated by a wide probe beam, the whole structure acts as an optical component reshaping the Gaussian light intensity profile into the profiles resembling the squares of Bessel functions of the zeroth- or higher orders. Moreover, a physical justification of the effects observed is provided.
RESUMO
Photopolymers have become an important recording material for many applications, mainly related to holography. Their flexibility to change the chemical composition together with the optical properties made them a versatile holographic recording material. The introduction of liquid crystal molecules in a photopolymer based on multifunctional monomer provides us the possibility to generate tunable holograms. The switchable holographic elements are a key point for see-through applications. In this work, we optimize the holographic polymer-dispersed liquid crystals composition to improve the performance of tunable waveguide couplers based on transmission gratings and specifically their response under an applied electric field. A variation around 60% in the transmission efficiency was achieved.
RESUMO
Versatile substituted electron-deficient trichloromethylarenes can easily be synthesized and combined with a Safranine O/triarylalkylborate salt to form a highly efficient three-component photo-initiation system that starts free radical polymerization to finally form holographic gratings with a single-pulsed laser. The mechanism of this photo-initiation most likely relies on an electron transfer from the borate salt into the semi-occupied HOMO of the excited dye molecule Safranine O, which after fragmentation generates an initiating alkyl radical and longer-lived dye radical species. This dye radical is most probably oxidized by the newly introduced trichloromethylarene derivative as an electron acceptor. The two generated radicals from one absorbed photon initiate the photopolymerization and form index gratings in a suitable holographic recording material. This process is purely photonic and does not require further non-photonic post treatments.
RESUMO
The use of Holographic Optical Elements (HOEs) in applications, such as in light shaping and redirection, requires certain characteristics such as a high Diffraction Efficiency, low angular selectivity and stability against UV damage. In order to maximize the performance of the HOEs, photosensitive materials are needed that have been optimised for the characteristics that are of particular importance in that application. At the core of the performance of these devices is the refractive index modulation created during holographic recording. Typically, a higher refractive index modulation will enable greater light Diffraction Efficiency and also operation with thinner devices, which in turn decreases the angular selectivity and the stability of the refractive index modulation introduced during recording, which is key to the longevity of the device. Solar concentrators based on volume HOEs can particularly benefit from thinner devices, because, for a solar concentrator to have a high angular working range, thinner photopolymer layers with a smaller angular selectivity are required. This paper presents an optimisation of an acrylamide-based photopolymer formulation for an improved refractive index modulation and recording speed. This was achieved by studying the effect of the concentration of acrylamide and the influence of different initiators in the photopolymer composition on the diffraction efficiency of holographic gratings. Two initiators of different molecular weights were compared: triethanolamine (TEA) and methyldiethanolamine (MDEA). A fivefold increase in the rate of grating formation was achieved through the modification of the acrylamide concentration alone, and it was also found that holograms recorded with MDEA as the initiator performed the best and recorded up to 25% faster than a TEA-based photopolymer. Finally, tests were carried out on the stability of the protected and unprotected photopolymer layers when subjected to UV light. The properties exhibited by this photopolymer composition make it a promising material for the production of optical elements and suitable for use in applications requiring prolonged exposure to UV light when protected by a thin melinex cover.
RESUMO
Polarization holography has the unique capacity to record and retrieve the amplitude, phase, and polarization of light simultaneously in a polarization-sensitive recording material and has attracted widespread attention. Polarization holography is a noteworthy technology with potential applications in the fields of high-capacity data storage, polarization-controlled optical elements, and other related fields. The choice of its high-performance materials is particularly important. To further develop polarization holography applications and improve the quality of the information recorded (i.e., material sensitivity and resolution), a deeper understanding of such materials is needed. We present an overview of the polarization-sensitive materials, which introduced polarization holographic technology and the development of polarization holographic materials. The three main types of polarization holographic materials are described, including azopolymer materials, photopolymer material, and photorefractive polymer material. We examine the key contributions of each work and present many of the suggestions that have been made to improve the different polarization-sensitive photopolymer materials.
RESUMO
Nanocomposites based on transparent polymer matrices containing nanoparticles (NPs) of noble metals are modern-day materials that can be specially designed for photonics, linear and nonlinear optics, laser physics and sensing applications. We present the improved photosensitive nanocomposites doped with Au and Ag NPs allowing fabrication of high effective submicrometer dimensional diffraction structures using holographic method. A general approach for the fabrication of holographic structures using a two-component mixture of the monomers of different reactivity was developed. Two different methods, ex situ and in situ, were studied to introduce Au and Ag NPs in the polymer matrix. The diffusion model of the grating formation upon holographic exposure as well as the process of Ag NP synthesis in a polymer matrix is considered. The influence of the NP size on the polymerization process, material dynamic range and nonlinear properties were investigated. The mechanisms and characteristics of the nanocomposite nonlinear optical response are discussed.
RESUMO
A holographic polymer dispersed liquid crystal (HPDLC) is used to record holographic diffraction gratings. Several mixtures of nematic liquid crystals (LC) are used as components of the HPDLC to evaluate their influence in static and dynamic basic properties. The diffraction efficiency obtained in the reconstruction of the holograms is evaluated to compare the influence of the different LC. Additionally, the samples are exposed to a variable electric field and the diffracted light intensity as a function of the applied voltage is measured to evaluate the influence of the LC. The results obtained show significant differences depending on the LC incorporated to the photopolymer.
RESUMO
We study the recording of complex diffractive elements, such as achromatic lenses, fork gratings or axicons. Using a 3-D diffusion model, previously validated, we are able to predict the behavior of photopolymer during recording. The experimental recording of these complex elements is possible thanks to a new generation spatial light modulator capable of generating periodic and aperiodic profiles. Both experimental and theoretical are analyzed and compared. The results show not only the good response of theoretical model to predict the behavior of the materials, but also the viability of photopolymers to store these kind of elements.
RESUMO
Holographic transmission gratings with a spatial frequency of 2658 lines/mm and reflection gratings with a spatial frequency of 4553 lines/mm were stored in a polyvinyl alcohol (PVA)/acrylamide (AA) based photopolymer. This material can reach diffraction efficiencies close to 100% for spatial frequencies about 1000 lines/mm. However, for higher spatial frequencies, the diffraction efficiency decreases considerably as the spatial frequency increases. To enhance the material response at high spatial frequencies, a chain transfer agent, the 4,4'-azobis (4-cyanopentanoic acid), ACPA, is added to the composition of the material. Different concentrations of ACPA are incorporated into the main composition of the photopolymer to find the concentration value that provides the highest diffraction efficiency. Moreover, the refractive index modulation and the optical thickness of the transmission and reflection gratings were obtained, evaluated and compared to procure more information about the influence of the ACPA on them.
RESUMO
Processes of e-beam and holographic recording of surface relief structures using Ge5As37S58-Se multilayer nanostructures as registering media were studied in this paper. Optical properties of Ge5As37S58, Se layers, and Ge5As37S58-Se multilayer nanostructures were investigated. Spectral dependencies of refractive index were analyzed within the frames of single oscillator model. Values of optical band gaps for Ge5As37S58, Se layers, and Ge5As37S58-Se multilayer nanostructures were obtained from Tauc dependencies. Using e-beam and holographic recording, diffraction gratings were fabricated in Ge5As37S58-Se multilayer nanostructures. Images of Ukraine and Moldova state emblems were obtained by e-beam recording. Image size consisted of 512 × 512 pixels (size of 1 pixel was ~2 µm). Ge5As37S58-Se multilayer nanostructures are perspective for the direct recording of holographic diffraction gratings and other optical elements.
RESUMO
We present an overview of recent investigations of photopolymerizable nanocomposite photonic materials in which, thanks to their high degree of material selectivity, recorded volume gratings possess high refractive index modulation amplitude and high mechanical/thermal stability at the same time, providing versatile applications in light and neutron optics. We discuss the mechanism of grating formation in holographically exposed nanocomposite materials, based on a model of the photopolymerization-driven mutual diffusion of monomer and nanoparticles. Experimental inspection of the recorded grating's morphology by various physicochemical and optical methods is described. We then outline the holographic recording properties of volume gratings recorded in photopolymerizable nanocomposite materials consisting of inorganic/organic nanoparticles and monomers having various photopolymerization mechanisms. Finally, we show two examples of our holographic applications, holographic digital data storage and slow-neutron beam control.
RESUMO
We have successfully proposed the application of transition metal compounds in holographic recording media. Such compounds feature an ultra-fast light-induced linkage isomerization of the transition-metal-ligand bond with switching times in the sub-picosecond regime and lifetimes from microseconds up to hours at room temperature. This article highlights the photofunctionality of two of the most promising transition metal compounds and the photophysical mechanisms that are underlying the hologram recording. We present the latest progress with respect to the key measures of holographic media assembled from transition metal compounds, the molecular embedding in a dielectric matrix and their impressive potential for modern holographic applications.