Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(3): e2217035120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36626548

RESUMO

Solvated electrons are powerful reducing agents capable of driving some of the most energetically expensive reduction reactions. Their generation under mild and sustainable conditions remains challenging though. Using near-ultraviolet irradiation under low-intensity one-photon conditions coupled with electrochemical and optical detection, we show that the yield of solvated electrons in water is increased more than 10 times for nanoparticle-decorated electrodes compared to smooth silver electrodes. Based on the simulations of electric fields and hot carrier distributions, we determine that hot electrons generated by plasmons are injected into water to form solvated electrons. Both yield enhancement and hot carrier production spectrally follow the plasmonic near-field. The ability to enhance solvated electron yields in a controlled manner by tailoring nanoparticle plasmons opens up a promising strategy for exploiting solvated electrons in chemical reactions.


Assuntos
Elétrons , Nanopartículas , Luz , Raios Ultravioleta , Água
2.
Nano Lett ; 24(29): 8851-8858, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38991547

RESUMO

The interpretation of mechanisms governing hot carrier reactivity on metallic nanostructures is critical, yet elusive, for advancing plasmonic photocatalysis. In this work, we explored the influence of the diffusion of molecules on the hot carrier extraction rate at the solid-liquid interface, which is of fundamental interest for increasing the efficiency of photodevices. Through a spatially defined scanning photoelectrochemical microscopy investigation, we identified a diffusion-controlled regime hindering the plasmon-driven photochemical activity of metallic nanostructures. Using low-power monochromatic illumination (<2 W cm-2), we unveiled the hidden influence of mass transport on the quantum efficiency of plasmonic photocatalysts. The availability of molecules at the solid-liquid interface directly limits the extraction of hot holes, according to their nature and energy, at the reactive spots in Au nanoislands on an ultrathin TiO2 substrate. An intriguing question arises: does the mass transport enhancement caused by thermal effects unlock the reactivity of nonthermal carriers under steady state?

3.
Nano Lett ; 24(28): 8619-8625, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38973705

RESUMO

Increased attention has been directed toward generating nonequilibrium hot carriers resulting from the decay of collective electronic oscillations on metal known as surface plasmons. Despite numerous experimental endeavors, demonstrating hot carrier-mediated photocatalysis without a heating contribution has proven challenging, particularly for single electron transfer reactions where the thermal contribution is generally detrimental. An innovative engineering solution is proposed to enable single electron transfer reactions with plasmonics. It consists of a photoelectrode designed as an energy filter and photocatalysis performed with light function modulation instead of continuously. The photoelectrode, consisting of FTO/TiO2 amorphous (10 nm)/Au nanoparticles, with TiO2 acting as a step-shape energy filter to enhance hot electron extraction and charge-separated state lifetime. The extracted hot electrons were directed toward the counter electrode, while the hot holes performed a single electron transfer oxidation reaction. Light modulation prevented local heat accumulation, effectively decoupling hot carrier catalysis from the thermal contribution.

4.
Nano Lett ; 24(38): 11913-11920, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39264279

RESUMO

Plasmonic excitations decay within femtoseconds, leaving nonthermal (often referred to as "hot") charge carriers behind that can be injected into molecular structures to trigger chemical reactions that are otherwise out of reach─a process known as plasmonic catalysis. In this Letter, we demonstrate that strong coupling between resonator structures and plasmonic nanoparticles can be used to control the spectral overlap between the plasmonic excitation energy and the charge injection energy into nearby molecules. Our atomistic description couples real-time density-functional theory self-consistently to an electromagnetic resonator structure via the radiation-reaction potential. Control over the resonator provides then an additional knob for nonintrusively enhancing plasmonic catalysis, here more than 6-fold, and dynamically reacting to deterioration of the catalyst─a new facet of modern catalysis.

5.
Nanotechnology ; 35(49)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39084236

RESUMO

Coinage metal nanoparticles (NPs) enable plasmonic catalysis by generating hot carriers that drive chemical reactions. Making NPs porous enhances the adsorption of reactant molecules. We present a dewetting and dealloying strategy to fabricate porous gold nanoparticles (Au-Sponge) and compare their CO2photoreduction activity with respect to the conventional gold nanoisland (Au-Island) morphology. Porous gold nanoparticles exhibit an unusually broad and red-shifted plasmon resonance which is in agreement with the results of finite difference time domain (FDTD) simulations. The key insight of this work is that the multi-step reduction of CO2driven by short-lived hot carriers generated by the d → s interband transition proceeds extremely quickly as evidenced by the generation of methane. A 3.8-fold enhancement in the photocatalytic performance is observed for the Au-Sponge in comparison to the Au-Island. Electrochemical cyclic voltammetry measurements confirm the 2.5-fold increase in the surface area and roughness factor of the Au-Sponge sample due to its porous nature. Our results indicate that the product yield is limited by the amount of surface adsorbates i.e. reactant-limited. Isotope-labeled mass spectrometry using13CO2was used to confirm that the reaction product (13CH4) originated from CO2photoreduction. We also present the plasmon-mediated photocatalytic transformation of 4-aminothiophenol (PATP) into p,p'-dimercaptoazobenzene (DMAB) using Au-Sponge and Au-Island samples.

6.
Nano Lett ; 23(10): 4572-4578, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37171253

RESUMO

In this study, we proposed a novel imaging technique, photoinduced electrogenerated chemiluminescence microscopy (PECLM), to monitor redox reactions driven by hot carriers on single gold nanoparticles (AuNPs) on TiO2. Under laser irradiation, plasmon-generated hot carriers were separated by an electric field, leaving hot holes on the surface of AuNPs to drive ECL reactions. PECL intensity was highly sensitive to the number of hot carriers. Through quantitative image analysis, we found that PECL density on individual AuNPs decreased significantly with an increase in particle diameter, indicating that particle size has a significant impact on photoelectrochemical conversion efficiency. For the first time, we verified the feasibility of PECLM in mapping the catalytic activity of single photocatalysts. PECLM opens a new prospect for the in situ imaging of photocatalysis in a high-throughput way, which not only facilitates the optimization of plasmonic photocatalysts but also contributes to the dynamic study of photocatalytic processes on micro/nanointerfaces.

7.
Nano Lett ; 23(18): 8524-8531, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37704574

RESUMO

Metal-enhanced photoluminescence is able to provide a robust signal even from a single emitter and is promising in applications in biosensors and optoelectronic devices. However, its realization with semiconductor nanocrystals (e.g., quantum dots, QDs) is not always straightforward due to the hidden and not fully described interactions between plasmonic nanoparticles and an emitter. Here, we demonstrate nonclassical enhancement (i.e., not a conventional electromagnetic mechanism) of the QD photoluminescence at nonplasmonic conditions and correlate it with the charge exchange processes in the system, particularly with high efficiency of the hot-hole generation in gold nanoparticles and the possibility of their transfer to QDs. The hole injection returns a QD from a charged nonemitting state caused by hole trapping by surface and/or interfacial traps into an uncharged emitting state, which leads to an increased photoluminescence intensity. These results open new insights into metal-enhanced photoluminescence, showing the importance of the QD surface states in this process.

8.
Nano Lett ; 23(7): 2719-2725, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37010208

RESUMO

Hot electron (HE) photocatalysis is one of the most intriguing fields of nanoscience, with a clear potential for technological impact. Despite much effort, the mechanisms of HE photocatalysis are not fully understood. Here we investigate a mechanism based on transient electron spillover on a molecule and subsequent energy release into vibrational modes. We use state-of-the-art real-time Time Dependent Density Functional Theory (rt-TDDFT), simulating the dynamics of a HE moving within linear chains of Ag or Au atoms, on which CO, N2, or H2O are adsorbed. We estimate the energy a HE can release into adsorbate vibrational modes and show that certain modes are selectively activated. The energy transfer strongly depends on the adsorbate, the metal, and the HE energy. Considering a cumulative effect from multiple HEs, we estimate this mechanism can transfer tenths of an eV to molecular vibrations and could play an important role in HE photocatalysis.

9.
Nano Lett ; 23(7): 2883-2889, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37001024

RESUMO

Strong hot-spots can facilitate photocatalytic reactions potentially providing effective solar-to-chemical energy conversion pathways. Although it is well-known that the local electromagnetic field in plasmonic nanocavities increases as the cavity size reduces, the influence of hot-spots on photocatalytic reactions remains elusive. Herein, we explored hot-spot dependent catalytic behaviors on a highly controlled platform with varying interparticle distances. Plasmon-meditated dehalogenation of 4-iodothiophenol was employed to observe time-resolved catalytic behaviors via in situ surface-enhanced Raman spectroscopy on dimers with 5, 10, 20, and 30 nm interparticle distances. As a result, we show that by reducing the gap from 20 to 10 nm, the reaction rate can be sped up more than 2 times. Further reduction in the interparticle distance did not improve reaction rate significantly although the maximum local-field was ∼2.3-fold stronger. Our combined experimental and theoretical study provides valuable insights in designing novel plasmonic photocatalytic platforms.

10.
Nano Lett ; 23(8): 3122-3127, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36867120

RESUMO

Conventional plasmonic nanoantennas enable scattering and absorption bands at the same wavelength region, making their utilization to full potential impossible for both features simultaneously. Here, we take advantage of spectrally separated scattering and absorption resonance bands in hyperbolic meta-antennas (HMA) to enhance the hot-electron generation and prolong the relaxation dynamics of hot carriers. First, we show that HMA enables extending plasmon-modulated photoluminescence spectrum toward longer wavelengths due to its particular scattering spectrum, in comparison to the corresponding nanodisk antennas (NDA). Then, we demonstrate that the tunable absorption band of HMA controls and modifies the lifetime of the plasmon-induced hot electrons with enhanced excitation efficiency in the near-infrared region and also broadens the utilization of the visible/NIR spectrum in comparison to NDA. Thus, the rational heterostructures designed by plasmonic and adsorbate/dielectric layers with such dynamics can be a platform for optimization and engineering the utilization of plasmon-induced hot carriers.

11.
Angew Chem Int Ed Engl ; : e202409484, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39218790

RESUMO

Utilizing hot carriers for efficient plasmonic-mediated chemical reactions (PMCRs) to convert solar energy into secondary energy is one of the most feasible solutions to the global environmental and energy crisis. Finding a plasmonic heterogeneous nanostructure with a more efficient and reasonable hot carrier transport path without affecting the intrinsic plasmonic properties is still a major challenge that urgently needs to be solved in this field. Herein, the mechanism by which plasmonic-promoted interatomic hot electron redistribution on the surface of Au3Cu alloy nanoparticles promotes the electrocatalytic nitrogen reduction reaction (ENRR) is successfully clarified. The localized surface plasmon resonance (LSPR) effect can boost the transfer of plasmonic hot electrons from Au atoms to Cu atoms, trigger the interatomic electron regulation of Au3Cu alloy nanoparticles, enhance the desorption of ammonia molecules, and increase the ammonia yield by approximately 93.9%. This work provides an important reference for rationally designing and utilizing the LSPR effect to efficiently regulate the distribution and mechanism of plasmonic hot carriers on the surface of heterogeneous alloy nanostructures.

12.
Proc Natl Acad Sci U S A ; 117(36): 21962-21967, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32848070

RESUMO

Two-dimensional electron gases (2DEGs) are at the base of current nanoelectronics because of their exceptional mobilities. Often the accumulation layer forms at polar interfaces with longitudinal optical (LO) modes. In most cases, the many-body screening of the quasi-2DEGs dramatically reduces the Fröhlich scattering strength. Despite the effectiveness of such a process, it has been recurrently proposed that a remote coupling with LO phonons persists even at high carrier concentration. We address this issue by perturbing electrons in an accumulation layer via an ultrafast laser pulse and monitoring their relaxation via time- and momentum-resolved spectroscopy. The cooling rate of excited carriers is monitored at doping level spanning from the semiconducting to the metallic limit. We observe that screening of LO phonons is not as efficient as it would be in a strictly 2D system. The large discrepancy is due to the remote coupling of confined states with the bulk. Our data indicate that the effect of such a remote coupling can be mimicked by a 3D Fröhlich interaction with Thomas-Fermi screening. These conclusions are very general and should apply to field effect transistors (FET) with high-κ dielectric gates, van der Waals heterostructures, and metallic interfaces between insulating oxides.

13.
Sensors (Basel) ; 23(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36772490

RESUMO

The application of the unique properties of terahertz radiation is increasingly needed in sensors, especially in those operating at room temperature without an external bias voltage. Bow-tie microwave diodes on the base of InGaAs semiconductor structures meet these requirements. These diodes operate on the basis of free-carrier heating in microwave electric fields, which allows for the use of such sensors in millimeter- and submillimeter-wavelength ranges. However, there still exists some uncertainty concerning the origin of the voltage detected across these diodes. This work provides a more detailed analysis of the detection mechanisms in InAlAs/InGaAs selectively doped bow-tie-shaped semiconductor structures. The influence of the InAs inserts in the InGaAs layer is investigated under various illumination and temperature conditions. A study of the voltage-power characteristics, the voltage sensitivity dependence on frequency in the Ka range, temperature dependence of the detected voltage and its relaxation characteristics lead to the conclusion that a photo-gradient electromotive force arises in bow-tie diodes under simultaneous light illumination and microwave radiation.

14.
Nano Lett ; 22(5): 2127-2133, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35075905

RESUMO

The search for the signature of nonthermal (so-called "hot") electrons in illuminated plasmonic nanostructures requires detailed understanding of the nonequilibrium electron distribution under illumination, as well as a careful design of the experimental system employed to distinguish nonthermal electrons from thermal ones. Here, we provide a theory for using plasmonic molecular junctions to achieve this goal. We show how nonthermal electrons can be measured directly and separately from the unavoidable thermal response and discuss the relevance of our theory to recent experiments.


Assuntos
Elétrons , Nanoestruturas , Nanoestruturas/química
15.
Small ; 18(52): e2205080, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36344458

RESUMO

Sample degradation, in particular of biomolecules, frequently occurs in surface-enhanced Raman spectroscopy (SERS) utilizing supported silver SERS substrates. Currently, thermal and/or photocatalytic effects are considered to cause sample degradation. This paper establishes the efficient inhibition of sample degradation using iodide which is demonstrated by a systematic SERS study of a small peptide in aqueous solution. Remarkably, a distinct charge separation-induced surface potential difference is observed for SERS substrates under laser irradiation using Kelvin probe force microscopy. This directly unveils the photocatalytic effect of Ag-SERS substrates. Based on the presented results, it is proposed that plasmonic photocatalysis dominates sample degradation in SERS experiments and the suppression of typical SERS sample degradation by iodide is discussed by means of the energy levels of the substrate under mild irradiation conditions. This approach paves the way toward more reliable and reproducible SERS studies of biomolecules under physiological conditions.


Assuntos
Iodetos , Análise Espectral Raman , Análise Espectral Raman/métodos , Microscopia de Força Atômica
16.
Proc Natl Acad Sci U S A ; 116(17): 8161-8166, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30952788

RESUMO

We investigate, with a combination of ultrafast optical spectroscopy and semiclassical modeling, the photothermal properties of various water-soluble nanocrystal assemblies. Broadband pump-probe experiments with ∼100-fs time resolution in the visible and near infrared reveal a complex scenario for their transient optical response that is dictated by their hybrid composition at the nanoscale, comprising metallic (Au) or semiconducting ([Formula: see text]) nanostructures and a matrix of organic ligands. We track the whole chain of energy flow that starts from light absorption by the individual nanocrystals and subsequent excitation of out-of-equilibrium carriers followed by the electron-phonon equilibration, occurring in a few picoseconds, and then by the heat release to the matrix on the 100-ps timescale. Two-dimensional finite-element method electromagnetic simulations of the composite nanostructure and multitemperature modeling of the energy flow dynamics enable us to identify the key mechanism presiding over the light-heat conversion in these kinds of nanomaterials. We demonstrate that hybrid (organic-inorganic) nanocrystal assemblies can operate as efficient nanoheaters by exploiting the high absorption from the individual nanocrystals, enabled by the dilution of the inorganic phase that is followed by a relatively fast heating of the embedding organic matrix, occurring on the 100-ps timescale.

17.
Molecules ; 27(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36296518

RESUMO

Harvesting energetic carriers from plasmonic resonance has been a hot topic in the field of photodetection in the last decade. By interfacing a plasmonic metal with a semiconductor, the photoelectric conversion mechanism, based on hot carrier emission, is capable of overcoming the band gap limitation imposed by the band-to-band transition of the semiconductor. To date, most of the existing studies focus on plasmonic structural engineering in a single metal-semiconductor (MS) junction system and their responsivities are still quite low in comparison to conventional semiconductor, material-based photodetection platforms. Herein, we propose a new architecture of metal-semiconductor-metal (MSM) junctions on a silicon platform to achieve efficient hot hole collection at infrared wavelengths with a photoconductance gain mechanism. The coplanar interdigitated MSM electrode's configuration forms a back-to-back Schottky diode and acts simultaneously as the plasmonic absorber/emitter, relying on the hot-spots enriched on the random Au/Si nanoholes structure. The hot hole-mediated photoelectric response was extended far beyond the cut-off wavelength of the silicon. The proposed MSM device with an interdigitated electrode design yields a very high photoconductive gain, leading to a photocurrent responsivity up to several A/W, which is found to be at least 1000 times higher than that of the existing hot carrier based photodetection strategies.

18.
Angew Chem Int Ed Engl ; 61(8): e202115819, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-34890086

RESUMO

The structure-function relationship of plasmon-enhanced electrochemistry (PEEC) is of great importance for the design of efficient PEEC catalysts, but is rarely investigated at single nanoparticle level for the lack of an efficient nanoscale methodology. Herein, we report the utilization of nanoparticle impact electrochemistry to allow single nanoparticle PEEC, where the effect of incident light on the plasmonic Ag/Au nanoparticles for accelerating cobalt metal-organic framework nanosheets (Co-MOFNs) catalyzed hydrogen evolution reaction (HER) is systematically explored. It is found that the plasmon-excited hot carrier injection can lower the reaction activation energy, resulting in a much promoted reaction probability and the integral charge generated from individual collisions. Besides, a plasmonic nanoparticle filtering method is established to effectively distinguish different plasmonic nanoparticles. This work provides a unique view in understanding the intrinsic physicochemical properties for PEEC at the nano-confined domains.

19.
Nano Lett ; 20(3): 1819-1829, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32049539

RESUMO

We combine state-of-the-art ultrafast photoluminescence and absorption spectroscopy and nonadiabatic molecular dynamics simulations to investigate charge-carrier cooling in CsPbBr3 nanocrystals over a very broad size regime, from 0.8 to 12 nm. Contrary to the prevailing notion that polaron formation slows down charge-carrier cooling in lead-halide perovskites, no suppression of carrier cooling is observed in CsPbBr3 nanocrystals except for a slow cooling (over ∼10 ps) of "warm" electrons in the vicinity (within ∼0.1 eV) of the conduction band edge. At higher excess energies, electrons and holes cool with similar rates, on the order of 1 eV ps-1 carrier-1, increasing weakly with size. Our ab initio simulations suggest that cooling proceeds via fast phonon-mediated intraband transitions driven by strong and size-dependent electron-phonon coupling. The presented experimental and computational methods yield the spectrum of involved phonons and may guide the development of devices utilizing hot charge carriers.

20.
Sensors (Basel) ; 20(3)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033122

RESUMO

We propose a new design microwave radiation sensor based on a selectively doped semiconductor structure of asymmetrical shape (so-called bow-tie diode). The novelty of the design comes down to the gating of the active layer of the diode above different regions of the two-dimensional electron channel. The gate influences the sensing properties of the bow-tie diode depending on the nature of voltage detected across the ungated one as well as on the location of the gate in regard to the diode contacts. When the gate is located by the wide contact, the voltage sensitivity increases ten times as compared to the case of the ungated diode, and the detected voltage holds the same polarity of the thermoelectric electromotive force of hot electrons in an asymmetrically shaped n-n+ junction. Another remarkable effect of the gate placed by the wide contact is weak dependence of the detected voltage on frequency which makes such a microwave diode to be a proper candidate for the detection of electromagnetic radiation in the microwave and sub-terahertz frequency range. When the gate is situated beside the narrow contact, the two orders of sensitivity magnitude increase are valid in the microwaves but the voltage sensitivity is strongly frequency-dependent for higher frequencies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA