Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(18): 4680-4696.e22, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34380047

RESUMO

Mutations causing amyotrophic lateral sclerosis (ALS) often affect the condensation properties of RNA-binding proteins (RBPs). However, the role of RBP condensation in the specificity and function of protein-RNA complexes remains unclear. We created a series of TDP-43 C-terminal domain (CTD) variants that exhibited a gradient of low to high condensation propensity, as observed in vitro and by nuclear mobility and foci formation. Notably, a capacity for condensation was required for efficient TDP-43 assembly on subsets of RNA-binding regions, which contain unusually long clusters of motifs of characteristic types and density. These "binding-region condensates" are promoted by homomeric CTD-driven interactions and required for efficient regulation of a subset of bound transcripts, including autoregulation of TDP-43 mRNA. We establish that RBP condensation can occur in a binding-region-specific manner to selectively modulate transcriptome-wide RNA regulation, which has implications for remodeling RNA networks in the context of signaling, disease, and evolution.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Regiões 3' não Traduzidas/genética , Sequência de Bases , Núcleo Celular/metabolismo , Células HEK293 , Células HeLa , Homeostase , Humanos , Mutação/genética , Motivos de Nucleotídeos/genética , Transição de Fase , Mutação Puntual/genética , Poli A/metabolismo , Ligação Proteica , Multimerização Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Deleção de Sequência
2.
Cell ; 171(7): 1559-1572.e20, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29245011

RESUMO

Large-scale transcriptome sequencing efforts have vastly expanded the catalog of long non-coding RNAs (lncRNAs) with varying evolutionary conservation, lineage expression, and cancer specificity. Here, we functionally characterize a novel ultraconserved lncRNA, THOR (ENSG00000226856), which exhibits expression exclusively in testis and a broad range of human cancers. THOR knockdown and overexpression in multiple cell lines and animal models alters cell or tumor growth supporting an oncogenic role. We discovered a conserved interaction of THOR with IGF2BP1 and show that THOR contributes to the mRNA stabilization activities of IGF2BP1. Notably, transgenic THOR knockout produced fertilization defects in zebrafish and also conferred a resistance to melanoma onset. Likewise, ectopic expression of human THOR in zebrafish accelerated the onset of melanoma. THOR represents a novel class of functionally important cancer/testis lncRNAs whose structure and function have undergone positive evolutionary selection.


Assuntos
Modelos Animais de Doenças , Melanoma/metabolismo , RNA Longo não Codificante/metabolismo , Peixe-Zebra , Animais , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Humanos , Masculino , Camundongos , Proteínas de Ligação a RNA/metabolismo , Testículo/metabolismo
3.
Mol Cell ; 83(15): 2653-2672.e15, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37506698

RESUMO

Splicing of pre-mRNAs critically contributes to gene regulation and proteome expansion in eukaryotes, but our understanding of the recognition and pairing of splice sites during spliceosome assembly lacks detail. Here, we identify the multidomain RNA-binding protein FUBP1 as a key splicing factor that binds to a hitherto unknown cis-regulatory motif. By collecting NMR, structural, and in vivo interaction data, we demonstrate that FUBP1 stabilizes U2AF2 and SF1, key components at the 3' splice site, through multivalent binding interfaces located within its disordered regions. Transcriptional profiling and kinetic modeling reveal that FUBP1 is required for efficient splicing of long introns, which is impaired in cancer patients harboring FUBP1 mutations. Notably, FUBP1 interacts with numerous U1 snRNP-associated proteins, suggesting a unique role for FUBP1 in splice site bridging for long introns. We propose a compelling model for 3' splice site recognition of long introns, which represent 80% of all human introns.


Assuntos
Sítios de Splice de RNA , Splicing de RNA , Humanos , Sítios de Splice de RNA/genética , Íntrons/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
4.
Mol Cell ; 82(17): 3135-3150.e9, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35914531

RESUMO

Alternative polyadenylation (APA) enhances gene regulatory potential by increasing the diversity of mRNA transcripts. 3' UTR shortening through APA correlates with enhanced cellular proliferation and is a widespread phenomenon in tumor cells. Here, we show that the ubiquitously expressed transcription factor Sp1 binds RNA in vivo and is a common repressor of distal poly(A) site usage. RNA sequencing identified 2,344 genes (36% of the total mapped mRNA transcripts) with lengthened 3' UTRs upon Sp1 depletion. Sp1 preferentially binds the 3' UTRs of such lengthened transcripts and inhibits cleavage at distal sites by interacting with the subunits of the core cleavage and polyadenylation (CPA) machinery. The 3' UTR lengths of Sp1 target genes in breast cancer patient RNA-seq data correlate with Sp1 expression levels, implicating Sp1-mediated APA regulation in modulating tumorigenic properties. Taken together, our findings provide insights into the mechanism for dynamic APA regulation by unraveling a previously unknown function of the DNA-binding transcription factor Sp1.


Assuntos
Poli A , Poliadenilação , Regiões 3' não Traduzidas , Humanos , Poli A/metabolismo , RNA Mensageiro/metabolismo , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Zinco/metabolismo
5.
J Biol Chem ; 300(7): 107457, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866324

RESUMO

AT-rich interacting domain (ARID)-containing proteins, Arids, are a heterogeneous DNA-binding protein family involved in transcription regulation and chromatin processing. For the member Arid5a, no exact DNA-binding preference has been experimentally defined so far. Additionally, the protein binds to mRNA motifs for transcript stabilization, supposedly through the DNA-binding ARID domain. To date, however, no unbiased RNA motif definition and clear dissection of nucleic acid-binding through the ARID domain have been undertaken. Using NMR-centered biochemistry, we here define the Arid5a DNA preference. Further, high-throughput in vitro binding reveals a consensus RNA-binding motif engaged by the core ARID domain. Finally, transcriptome-wide binding (iCLIP2) reveals that Arid5a has a weak preference for (A)U-rich regions in pre-mRNA transcripts of factors related to RNA processing. We find that the intrinsically disordered regions flanking the ARID domain modulate the specificity and affinity of DNA binding, while they appear crucial for RNA interactions. Ultimately, our data suggest that Arid5a uses its extended ARID domain for bifunctional gene regulation and that the involvement of IDR extensions is a more general feature of Arids in interacting with different nucleic acids at the chromatin-mRNA interface.

6.
Plant J ; 118(1): 203-224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38124335

RESUMO

The importance of RNA-binding proteins (RBPs) for plant responses to environmental stimuli and development is well documented. Insights into the portfolio of RNAs they recognize, however, clearly lack behind the understanding gathered in non-plant model organisms. Here, we characterize binding of the circadian clock-regulated Arabidopsis thaliana GLYCINE-RICH RNA-BINDING PROTEIN 7 (AtGRP7) to its target transcripts. We identified novel RNA targets from individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) data using an improved bioinformatics pipeline that will be broadly applicable to plant RBP iCLIP data. 2705 transcripts with binding sites were identified in plants expressing AtGRP7-GFP that were not recovered in plants expressing an RNA-binding dead variant or GFP alone. A conserved RNA motif enriched in uridine residues was identified at the AtGRP7 binding sites. NMR titrations confirmed the preference of AtGRP7 for RNAs with a central U-rich motif. Among the bound RNAs, circadian clock-regulated transcripts were overrepresented. Peak abundance of the LHCB1.1 transcript encoding a chlorophyll-binding protein was reduced in plants overexpressing AtGRP7 whereas it was elevated in atgrp7 mutants, indicating that LHCB1.1 was regulated by AtGRP7 in a dose-dependent manner. In plants overexpressing AtGRP7, the LHCB1.1 half-life was shorter compared to wild-type plants whereas in atgrp7 mutant plants, the half-life was significantly longer. Thus, AtGRP7 modulates circadian oscillations of its in vivo binding target LHCB1.1 by affecting RNA stability.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Glicina/metabolismo , RNA/metabolismo , Estabilidade de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
7.
Mol Syst Biol ; 20(5): 573-589, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531971

RESUMO

Characterising RNA-protein interaction dynamics is fundamental to understand how bacteria respond to their environment. In this study, we have analysed the dynamics of 91% of the Escherichia coli expressed proteome and the RNA-interaction properties of 271 RNA-binding proteins (RBPs) at different growth phases. We find that 68% of RBPs differentially bind RNA across growth phases and characterise 17 previously unannotated proteins as bacterial RBPs including YfiF, a ncRNA-binding protein. While these new RBPs are mostly present in Proteobacteria, two of them are orthologs of human mitochondrial proteins associated with rare metabolic disorders. Moreover, we reveal novel RBP functions for proteins such as the chaperone HtpG, a new stationary phase tRNA-binding protein. For the first time, the dynamics of the bacterial RBPome have been interrogated, showcasing how this approach can reveal the function of uncharacterised proteins and identify critical RNA-protein interactions for cell growth which could inform new antimicrobial therapies.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , RNA Bacteriano , Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , RNA Bacteriano/metabolismo , RNA Bacteriano/genética , Proteoma/metabolismo , Ligação Proteica , Regulação Bacteriana da Expressão Gênica , Humanos
8.
BMC Plant Biol ; 24(1): 552, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877390

RESUMO

BACKGROUND: The interaction of proteins with RNA in the cell is crucial to orchestrate all steps of RNA processing. RNA interactome capture (RIC) techniques have been implemented to catalogue RNA- binding proteins in the cell. In RIC, RNA-protein complexes are stabilized by UV crosslinking in vivo. Polyadenylated RNAs and associated proteins are pulled down from cell lysates using oligo(dT) beads and the RNA-binding proteome is identified by quantitative mass spectrometry. However, insights into the RNA-binding proteome of a single RNA that would yield mechanistic information on how RNA expression patterns are orchestrated, are scarce. RESULTS: Here, we explored RIC in Arabidopsis to identify proteins interacting with a single mRNA, using the circadian clock-regulated Arabidopsis thaliana GLYCINE-RICH RNA-BINDING PROTEIN 7 (AtGRP7) transcript, one of the most abundant transcripts in Arabidopsis, as a showcase. Seedlings were treated with UV light to covalently crosslink RNA and proteins. The AtGRP7 transcript was captured from cell lysates with antisense oligonucleotides directed against the 5'untranslated region (UTR). The efficiency of RNA capture was greatly improved by using locked nucleic acid (LNA)/DNA oligonucleotides, as done in the enhanced RIC protocol. Furthermore, performing a tandem capture with two rounds of pulldown with the 5'UTR oligonucleotide increased the yield. In total, we identified 356 proteins enriched relative to a pulldown from atgrp7 mutant plants. These were benchmarked against proteins pulled down from nuclear lysates by AtGRP7 in vitro transcripts immobilized on beads. Among the proteins validated by in vitro interaction we found the family of Acetylation Lowers Binding Affinity (ALBA) proteins. Interaction of ALBA4 with the AtGRP7 RNA was independently validated via individual-nucleotide resolution crosslinking and immunoprecipitation (iCLIP). The expression of the AtGRP7 transcript in an alba loss-of-function mutant was slightly changed compared to wild-type, demonstrating the functional relevance of the interaction. CONCLUSION: We adapted specific RNA interactome capture with LNA/DNA oligonucleotides for use in plants using AtGRP7 as a showcase. We anticipate that with further optimization and up scaling the protocol should be applicable for less abundant transcripts.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteoma , RNA Mensageiro , Proteínas de Ligação a RNA , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
9.
Mol Cell ; 64(2): 320-333, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27720646

RESUMO

To identify endogenous miRNA-target sites, we isolated AGO-bound RNAs from Caenorhabditis elegans by individual-nucleotide resolution crosslinking immunoprecipitation (iCLIP), which fortuitously also produced miRNA-target chimeric reads. Through the analysis of thousands of reproducible chimeras, pairing to the miRNA seed emerged as the predominant motif associated with functional interactions. Unexpectedly, we discovered that additional pairing to 3' sequences is prevalent in the majority of target sites and leads to specific targeting by members of miRNA families. By editing an endogenous target site, we demonstrate that 3' pairing determines targeting by specific miRNA family members and that seed pairing is not always sufficient for functional target interactions. Finally, we present a simplified method, chimera PCR (ChimP), for the detection of specific miRNA-target interactions. Overall, our analysis revealed that sequences in the 5' as well as the 3' regions of a miRNA provide the information necessary for stable and specific miRNA-target interactions in vivo.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , MicroRNAs/genética , RNA de Helmintos/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Animais , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Éxons , Regulação da Expressão Gênica , Imunoprecipitação/métodos , Íntrons , MicroRNAs/classificação , MicroRNAs/metabolismo , Ligação Proteica , RNA de Helmintos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo
10.
Genes Dev ; 30(5): 487-8, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26944675

RESUMO

How does a mammalian cell determine when newly synthesized mRNAs are fully processed and appropriate for nuclear export? Müller-McNicoll and colleagues (pp. 553-566) expand on mechanisms known to be mediated by nuclear export factor 1 (NXF1) by describing SR proteins as NXF1 adaptors that flag alternatively spliced and polyadenylated mRNA isoforms as cargo ready for the cytoplasm.


Assuntos
Núcleo Celular/metabolismo , Processamento de Terminações 3' de RNA , Precursores de RNA/metabolismo , Splicing de RNA , Transporte de RNA , Animais , Humanos , Camundongos , Ligação Proteica
11.
Genes Dev ; 30(5): 553-66, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26944680

RESUMO

Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1-7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1-7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3' untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3' ends.


Assuntos
Processamento Alternativo/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas , Transporte Ativo do Núcleo Celular/genética , Animais , Linhagem Celular , Camundongos , Proteínas Nucleares/metabolismo , Ligação Proteica , Reprodutibilidade dos Testes , Ribonucleoproteínas/metabolismo , Fatores de Processamento de Serina-Arginina
12.
Proc Natl Acad Sci U S A ; 117(13): 7140-7149, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32188783

RESUMO

The recognition of cis-regulatory RNA motifs in human transcripts by RNA binding proteins (RBPs) is essential for gene regulation. The molecular features that determine RBP specificity are often poorly understood. Here, we combined NMR structural biology with high-throughput iCLIP approaches to identify a regulatory mechanism for U2AF2 RNA recognition. We found that the intrinsically disordered linker region connecting the two RNA recognition motif (RRM) domains of U2AF2 mediates autoinhibitory intramolecular interactions to reduce nonproductive binding to weak Py-tract RNAs. This proofreading favors binding of U2AF2 at stronger Py-tracts, as required to define 3' splice sites at early stages of spliceosome assembly. Mutations that impair the linker autoinhibition enhance the affinity for weak Py-tracts result in promiscuous binding of U2AF2 along mRNAs and impact on splicing fidelity. Our findings highlight an important role of intrinsically disordered linkers to modulate RNA interactions of multidomain RBPs.


Assuntos
RNA/metabolismo , Fator de Processamento U2AF/metabolismo , Animais , Bovinos , Imunoprecipitação da Cromatina/métodos , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Motivo de Reconhecimento de RNA , Ribonucleosídeo Difosfato Redutase/metabolismo
13.
Genes Dev ; 28(6): 637-51, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24637117

RESUMO

The tight regulation of splicing networks is critical for organismal development. To maintain robust splicing patterns, many splicing factors autoregulate their expression through alternative splicing-coupled nonsense-mediated decay (AS-NMD). However, as negative autoregulation results in a self-limiting window of splicing factor expression, it is unknown how variations in steady-state protein levels can arise in different physiological contexts. Here, we demonstrate that Rbfox2 cross-regulates AS-NMD events within RNA-binding proteins to alter their expression. Using individual nucleotide-resolution cross-linking immunoprecipitation coupled to high-throughput sequencing (iCLIP) and mRNA sequencing, we identified >200 AS-NMD splicing events that are bound by Rbfox2 in mouse embryonic stem cells. These "silent" events are characterized by minimal apparent splicing changes but appreciable changes in gene expression upon Rbfox2 knockdown due to degradation of the NMD-inducing isoform. Nearly 70 of these AS-NMD events fall within genes encoding RNA-binding proteins, many of which are autoregulated. As with the coding splicing events that we found to be regulated by Rbfox2, silent splicing events are evolutionarily conserved and frequently contain the Rbfox2 consensus UGCAUG. Our findings uncover an unexpectedly broad and multilayer regulatory network controlled by Rbfox2 and offer an explanation for how autoregulatory splicing networks are tuned.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo/genética , Motivos de Aminoácidos , Animais , Sítios de Ligação , Células Cultivadas , Células-Tronco Embrionárias , Íntrons/genética , Camundongos , Ligação Proteica , Fatores de Processamento de RNA , Proteínas de Ligação a RNA/genética
14.
RNA ; 25(10): 1291-1297, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31289130

RESUMO

Argonaute (Ago) proteins interact with various binding partners and play a pivotal role in microRNA (miRNA)-mediated silencing pathways. By utilizing immunoprecipitation followed by mass spectrometry to determine cytoplasmic Ago2 protein complexes in mouse embryonic stem cells (mESCs), we identified a putative RNA-binding protein FAM120A (also known as OSSA/C9ORF10) as an Ago2 interacting protein. Individual nucleotide resolution cross-linking and immunoprecipitation (iCLIP) analysis revealed that FAM120A binds to homopolymeric tracts in 3'-UTRs of about 2000 mRNAs, particularly poly(G) sequences. Comparison of FAM120A iCLIP and Ago2 iCLIP reveals that greater than one-third of mRNAs bound by Ago2 in mESCs are co-bound by FAM120A. Furthermore, such FAM120A-bound Ago2 target genes are not subject to Ago2-mediated target degradation. Reporter assays suggest that the 3'-UTRs of several FAM120A-bound miRNA target genes are less sensitive to Ago2-mediated target repression than those of FAM120A-unbound miRNA targets and FAM120A modulates them via its G-rich target sites. These findings suggest that Ago2 may exist in multiple protein complexes with varying degrees of functionality.


Assuntos
Proteínas Argonautas/metabolismo , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas , Animais , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Imunoprecipitação , Camundongos
15.
EMBO Rep ; 20(1)2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30552148

RESUMO

RNA-binding proteins (RBPs) determine spatiotemporal gene expression by mediating active transport and local translation of cargo mRNAs. Here, we cast a transcriptome-wide view on the transported mRNAs and cognate RBP binding sites during endosomal messenger ribonucleoprotein (mRNP) transport in Ustilago maydis Using individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP), we compare the key transport RBP Rrm4 and the newly identified endosomal mRNP component Grp1 that is crucial to coordinate hyphal growth. Both RBPs bind predominantly in the 3' untranslated region of thousands of shared cargo mRNAs, often in close proximity. Intriguingly, Rrm4 precisely binds at stop codons, which constitute landmark sites of translation, suggesting an intimate connection of mRNA transport and translation. Towards uncovering the code of recognition, we identify UAUG as specific binding motif of Rrm4 that is bound by its third RRM domain. Altogether, we provide first insights into the positional organisation of co-localising RBPs on individual cargo mRNAs.


Assuntos
Proteínas Fúngicas/genética , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas/genética , Ustilago/genética , Sítios de Ligação , Transporte Biológico/genética , Endossomos/genética , Regulação da Expressão Gênica , Microtúbulos/genética , Transporte de RNA/genética , RNA Mensageiro/genética , Transcriptoma/genética
16.
Methods ; 178: 49-62, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31751605

RESUMO

Precise knowledge on the binding sites of an RNA-binding protein (RBP) is key to understanding the complex post-transcriptional regulation of gene expression. This information can be obtained from individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) experiments. Here, we present a complete data analysis workflow to reliably detect RBP binding sites from iCLIP data. The workflow covers all steps from the initial quality control of the sequencing reads up to peak calling and quantification of RBP binding. For each tool, we explain the specific requirements for iCLIP data analysis and suggest optimised parameter settings.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Imunoprecipitação/métodos , RNA/isolamento & purificação , Sítios de Ligação/genética , Regulação da Expressão Gênica/genética , Humanos , Ligação Proteica/genética , RNA/química , RNA/genética
17.
Methods ; 178: 63-71, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31494244

RESUMO

Post-transcriptional regulation makes an important contribution to adjusting the transcriptome to environmental changes in plants. RNA-binding proteins are key players that interact specifically with mRNAs to co-ordinate their fate. While the regulatory interactions between proteins and RNA are well understood in animals, until recently little information was available on the global binding landscape of RNA-binding proteins in higher plants. This is not least due to technical challenges in plants. In turn, while numerous RNA-binding proteins have been identified through mutant analysis and homology-based searches in plants, only recently a full compendium of proteins with RNA-binding activity has been experimentally determined for the reference plant Arabidopsis thaliana. State-of-the-art techniques to determine RNA-protein interactions genome-wide in animals are based on the covalent fixation of RNA and protein in vivo by UV light. This has only recently been successfully applied to plants. Here, we present practical considerations on the application of UV irradiation based methods to comprehensively determine in vivo RNA-protein interactions in Arabidopsis thaliana, focussing on individual nucleotide resolution crosslinking immunoprecipitation (iCLIP) and mRNA interactome capture.


Assuntos
Arabidopsis/genética , Imunoprecipitação/métodos , RNA/isolamento & purificação , Transcriptoma/genética , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA/genética , Proteínas de Ligação a RNA/genética
18.
Methods ; 178: 33-48, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31610236

RESUMO

Individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) is a state-of-the-art technology to map the RNA interaction sites of an RNA-binding protein (RBP) across the transcriptome. Here, we present the new iCLIP2 protocol that allows to obtain high-quality iCLIP libraries in a fast and efficient manner. The new protocol comprises separate adapter ligations, two cDNA amplification steps and bead-based size selection. The full procedure can be completed within four days. Our advances significantly increase the complexity of the iCLIP2 libraries, resulting in a more comprehensive representation of RBP binding sites. Overall, the methodological advances in iCLIP2 allow efficient library generation and thereby promote the versatile and flexible application of this important technology.


Assuntos
Sítios de Ligação/genética , Biblioteca Gênica , Imunoprecipitação/métodos , Proteínas de Ligação a RNA/isolamento & purificação , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , DNA Complementar/química , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Humanos , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Raios Ultravioleta
19.
Proc Natl Acad Sci U S A ; 115(12): E2859-E2868, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507242

RESUMO

Disturbed RNA processing and subcellular transport contribute to the pathomechanisms of motoneuron diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. RNA-binding proteins are involved in these processes, but the mechanisms by which they regulate the subcellular diversity of transcriptomes, particularly in axons, are not understood. Heterogeneous nuclear ribonucleoprotein R (hnRNP R) interacts with several proteins involved in motoneuron diseases. It is located in axons of developing motoneurons, and its depletion causes defects in axon growth. Here, we used individual nucleotide-resolution cross-linking and immunoprecipitation (iCLIP) to determine the RNA interactome of hnRNP R in motoneurons. We identified ∼3,500 RNA targets, predominantly with functions in synaptic transmission and axon guidance. Among the RNA targets identified by iCLIP, the noncoding RNA 7SK was the top interactor of hnRNP R. We detected 7SK in the nucleus and also in the cytosol of motoneurons. In axons, 7SK localized in close proximity to hnRNP R, and depletion of hnRNP R reduced axonal 7SK. Furthermore, suppression of 7SK led to defective axon growth that was accompanied by axonal transcriptome alterations similar to those caused by hnRNP R depletion. Using a series of 7SK-deletion mutants, we show that the function of 7SK in axon elongation depends on its interaction with hnRNP R but not with the PTEF-B complex involved in transcriptional regulation. These results propose a role for 7SK as an essential interactor of hnRNP R to regulate its function in axon maintenance.


Assuntos
Axônios/fisiologia , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Neurônios Motores/fisiologia , RNA Nuclear Pequeno/metabolismo , Regiões 3' não Traduzidas , Animais , Núcleo Celular/genética , Citosol/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Ribonucleoproteínas Nucleares Heterogêneas/genética , Imunoprecipitação/métodos , Camundongos , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/genética , Transcriptoma/genética
20.
BMC Bioinformatics ; 21(1): 113, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32183735

RESUMO

BACKGROUND: RNA-binding proteins interact with their target RNAs at specific sites. These binding sites can be determined genome-wide through individual nucleotide resolution crosslinking immunoprecipitation (iCLIP). Subsequently, the binding sites have to be visualized. So far, no visualization tool exists that is easily accessible but also supports restricted access so that data can be shared among collaborators. RESULTS: Here we present SEQing, a customizable interactive dashboard to visualize crosslink sites on target genes of RNA-binding proteins that have been obtained by iCLIP. Moreover, SEQing supports RNA-seq data that can be displayed in a different window tab. This allows, e.g. crossreferencing the iCLIP data with genes differentially expressed in mutants of the RBP and thus obtain some insights into a potential functional relevance of the binding sites. Additionally, detailed information on the target genes can be incorporated in another tab. CONCLUSION: SEQing is written in Python3 and runs on Linux. The web-based access makes iCLIP data easily accessible, even with mobile devices. SEQing is customizable in many ways and has also the option to be secured by a password. The source code is available at https://github.com/malewins/SEQing.


Assuntos
Biologia Computacional/métodos , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Sítios de Ligação , Humanos , Imunoprecipitação , Internet , RNA/química , RNA/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , RNA-Seq , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA